Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract PurposeHypolimnetic hypoxia has become increasingly prevalent in stratified water bodies in recent decades due to climate change. One primary sink of dissolved oxygen (DO) is sediment oxygen uptake ($${J}_{{O}_{2}}$$ ). On the water side of the sediment–water interface (SWI),$${J}_{{O}_{2}}$$ is controlled by a diffusive boundary layer (DBL), a millimeter-scale layer where molecular diffusion is the primary transport mechanism. In previous studies, the DBL was determined by visual inspection, which is subjective and time-consuming. Material and methodsIn this study, a computational procedure is proposed to determine the SWI and DBL objectively and automatically. The procedure was evaluated for more than 300 DO profiles in the sediment of three eutrophic water bodies spanning gradients of depth and surface area. Synthetic DO profiles were modeled based on sediment characteristics estimated by laboratory experiments. The procedure was further verified adopting the synthetic profiles. Results and discussionThe procedure, which was evaluated for both measured and synthetic DO profiles, determined the SWI and DBL well for both steady and non-steady state DO profiles. A negative relationship between DBL thickness and aeration rates was observed, which agrees with existing literatures. ConclusionsThe procedure is recommended for future studies involving characterizing DBL to improve efficiency and consistency.more » « less
-
Abstract Near‐term, iterative ecological forecasts can be used to help understand and proactively manage ecosystems. To date, more forecasts have been developed for aquatic ecosystems than other ecosystems worldwide, likely motivated by the pressing need to conserve these essential and threatened ecosystems and increasing the availability of high‐frequency data. Forecasters have implemented many different modeling approaches to forecast freshwater variables, which have demonstrated promise at individual sites. However, a comprehensive analysis of the performance of varying forecast models across multiple sites is needed to understand broader controls on forecast performance. Forecasting challenges (i.e., community‐scale efforts to generate forecasts while also developing shared software, training materials, and best practices) present a useful platform for bridging this gap to evaluate how a range of modeling methods perform across axes of space, time, and ecological systems. Here, we analyzed forecasts from the aquatics theme of the National Ecological Observatory Network (NEON) Forecasting Challenge hosted by the Ecological Forecasting Initiative. Over 100,000 probabilistic forecasts of water temperature and dissolved oxygen concentration for 1–30 days ahead across seven NEON‐monitored lakes were submitted in 2023. We assessed how forecast performance varied among models with different structures, covariates, and sources of uncertainty relative to baseline null models. A similar proportion of forecast models were skillful across both variables (34%–40%), although more individual models outperformed the baseline models in forecasting water temperature (10 models out of 29) than dissolved oxygen (6 models out of 15). These top performing models came from a range of classes and structures. For water temperature, we found that forecast skill degraded with increases in forecast horizons, process‐based models, and models that included air temperature as a covariate generally exhibited the highest forecast performance, and that the most skillful forecasts often accounted for more sources of uncertainty than the lower performing models. The most skillful forecasts were for sites where observations were most divergent from historical conditions (resulting in poor baseline model performance). Overall, the NEON Forecasting Challenge provides an exciting opportunity for a model intercomparison to learn about the relative strengths of a diverse suite of models and advance our understanding of freshwater ecosystem predictability.more » « less
-
Abstract Zooplankton play an integral role as indicators of water quality in freshwater ecosystems, but exhibit substantial variability in their density and community composition over space and time. This variability in zooplankton community structure may be driven by multiple factors, including taxon-specific migration behavior in response to environmental conditions. Many studies have highlighted substantial variability in zooplankton communities across spatial and temporal scales, but the relative importance of space vs. time in structuring zooplankton community dynamics is less understood. In this study, we quantified spatial (a littoral vs. a pelagic site) and temporal (hours to years) variability in zooplankton community structure in a eutrophic reservoir in southwestern Virginia, USA. We found that zooplankton community structure was more variable among sampling dates over 3 years than among sites or hours of the day, which was associated with differences in water temperature, chlorophyll a, and nutrient concentrations. Additionally, we observed high variability in zooplankton migration behavior, though a slightly greater magnitude of DHM vs. DVM during each sampling date, likely due to changing environmental conditions. Ultimately, our work underscores the need to continually integrate spatial and temporal monitoring to understand patterns of zooplankton community structure and behavior in freshwater ecosystems.more » « less
-
Abstract Temperate reservoirs and lakes worldwide are experiencing decreases in ice cover, which will likely alter the net balance of gross primary production (GPP) and respiration (R) in these ecosystems. However, most metabolism studies to date have focused on summer dynamics, thereby excluding winter dynamics from annual metabolism budgets. To address this gap, we analyzed 6 years of year‐round high‐frequency dissolved oxygen data to estimate daily rates of net ecosystem production (NEP), GPP, and R in a eutrophic, dimictic reservoir that has intermittent ice cover. Over 6 years, the reservoir exhibited slight heterotrophy during both summer and winter. We found winter and summer metabolism rates to be similar: summer NEP had a median rate of −0.06 mg O2L−1 day−1(range: −15.86 to 3.20 mg O2L−1 day−1), while median winter NEP was −0.02 mg O2L−1 day−1(range: −8.19 to 0.53 mg O2L−1 day−1). Despite large differences in the duration of ice cover among years, there were minimal differences in NEP among winters. Overall, the inclusion of winter data had a limited effect on annual metabolism estimates in a eutrophic reservoir, likely due to short winter periods in this reservoir (ice durations 0–35 days), relative to higher‐latitude lakes. Our work reveals a smaller difference between winter and summer NEP than in lakes with continuous ice cover. Ultimately, our work underscores the importance of studying full‐year metabolism dynamics in a range of aquatic ecosystems to help anticipate the effects of declining ice cover across lakes worldwide.more » « less
-
Abstract Water level drawdowns are increasingly common in lakes and reservoirs worldwide as a result of both climate change and water management. Drawdowns can have direct effects on physical properties of a waterbody (e.g., by altering stratification and light dynamics), which can interact to modify the waterbody's biology and chemistry. However, the ecosystem‐level effects of drawdown remain poorly characterized in small, thermally stratified reservoirs, which are common in many regions of the world. Here, we intensively monitored a small eutrophic reservoir for 2 years, including before, during, and after a month‐long drawdown that reduced total reservoir volume by 36%. During drawdown, stratification strength (maximum buoyancy frequency) and surface phosphate concentrations both increased, contributing to a substantial surface phytoplankton bloom. The peak in phytoplankton biomass was followed by cascading changes in surface water chemistry associated with bloom degradation, with sequential peaks in dissolved organic carbon, dissolved carbon dioxide, and ammonium concentrations that were up to an order of magnitude higher than the previous year. Dissolved oxygen concentrations substantially decreased in surface waters during drawdown (to 41% saturation), which was associated with increased total iron and manganese concentrations. Combined, our results illustrate how changes in water level can have cascading effects on coupled physical, chemical, and biological processes. As climate change and water management continue to increase the frequency of drawdowns in lakes worldwide, our results highlight the importance of characterizing how water level variability can alter complex in‐lake ecosystem processes, thereby affecting water quality.more » « less
-
Abstract Lake water clarity, phytoplankton biomass, and hypolimnetic oxygen concentration are metrics of water quality that are highly degraded in eutrophic systems. Eutrophication is linked to legacy nutrients stored in catchment soils and in lake sediments. Long lags in water quality improvement under scenarios of nutrient load reduction to lakes indicate an apparent ecosystem memory tied to the interactions between water biogeochemistry and lake sediment nutrients. To investigate how nutrient legacies and ecosystem memory control lake water quality dynamics, we coupled nutrient cycling and lake metabolism in a model to recreate long‐term water quality of a eutrophic lake (Lake Mendota, Wisconsin, USA). We modeled long‐term recovery of water quality under scenarios of nutrient load reduction and found that the rates and patterns of water quality improvement depended on changes in phosphorus (P) and organic carbon storage in the water column and sediments. Through scenarios of water quality improvement, we showed that water quality variables have distinct phases of change determined by the turnover rates of storage pools—an initial and rapid water quality improvement due to water column flushing, followed by a much longer and slower improvement as sediment P pools were slowly reduced. Water clarity, phytoplankton biomass, and hypolimnetic dissolved oxygen differed in their time responses. Water clarity and algal biomass improved within years of nutrient reductions, but hypolimnetic oxygen took decades to improve. Even with reduced catchment loading, recovery of Lake Mendota to a mesotrophic state may require decades due to nutrient legacies and long ecosystem memory.more » « less
-
Abstract Ecosystems around the globe are experiencing changes in both the magnitude and fluctuations of environmental conditions due to land use and climate change. In response, ecologists are increasingly using near‐term, iterative ecological forecasts to predict how ecosystems will change in the future. To date, many near‐term, iterative forecasting systems have been developed using high temporal frequency (minute to hourly resolution) data streams for assimilation. However, this approach may be cost‐prohibitive or impossible for forecasting ecological variables that lack high‐frequency sensors or have high data latency (i.e., a delay before data are available for modeling after collection). To explore the effects of data assimilation frequency on forecast skill, we developed water temperature forecasts for a eutrophic drinking water reservoir and conducted data assimilation experiments by selectively withholding observations to examine the effect of data availability on forecast accuracy. We used in situ sensors, manually collected data, and a calibrated water quality ecosystem model driven by forecasted weather data to generate future water temperature forecasts using Forecasting Lake and Reservoir Ecosystems (FLARE), an open source water quality forecasting system. We tested the effect of daily, weekly, fortnightly, and monthly data assimilation on the skill of 1‐ to 35‐day‐ahead water temperature forecasts. We found that forecast skill varied depending on the season, forecast horizon, depth, and data assimilation frequency, but overall forecast performance was high, with a mean 1‐day‐ahead forecast root mean square error (RMSE) of 0.81°C, mean 7‐day RMSE of 1.15°C, and mean 35‐day RMSE of 1.94°C. Aggregated across the year, daily data assimilation yielded the most skillful forecasts at 1‐ to 7‐day‐ahead horizons, but weekly data assimilation resulted in the most skillful forecasts at 8‐ to 35‐day‐ahead horizons. Within a year, forecasts with weekly data assimilation consistently outperformed forecasts with daily data assimilation after the 8‐day forecast horizon during mixed spring/autumn periods and 5‐ to 14‐day‐ahead horizons during the summer‐stratified period, depending on depth. Our results suggest that lower frequency data (i.e., weekly) may be adequate for developing accurate forecasts in some applications, further enabling the development of forecasts broadly across ecosystems and ecological variables without high‐frequency sensor data.more » « less
-
Abstract Near‐term freshwater forecasts, defined as sub‐daily to decadal future predictions of a freshwater variable with quantified uncertainty, are urgently needed to improve water quality management as freshwater ecosystems exhibit greater variability due to global change. Shifting baselines in freshwater ecosystems due to land use and climate change prevent managers from relying on historical averages for predicting future conditions, necessitating near‐term forecasts to mitigate freshwater risks to human health and safety (e.g., flash floods, harmful algal blooms) and ecosystem services (e.g., water‐related recreation and tourism). To assess the current state of freshwater forecasting and identify opportunities for future progress, we synthesized freshwater forecasting papers published in the past 5 years. We found that freshwater forecasting is currently dominated by near‐term forecasts of waterquantityand that near‐term waterqualityforecasts are fewer in number and in the early stages of development (i.e., non‐operational) despite their potential as important preemptive decision support tools. We contend that more freshwater quality forecasts are critically needed and that near‐term water quality forecasting is poised to make substantial advances based on examples of recent progress in forecasting methodology, workflows, and end‐user engagement. For example, current water quality forecasting systems can predict water temperature, dissolved oxygen, and algal bloom/toxin events 5 days ahead with reasonable accuracy. Continued progress in freshwater quality forecasting will be greatly accelerated by adapting tools and approaches from freshwater quantity forecasting (e.g., machine learning modeling methods). In addition, future development of effective operational freshwater quality forecasts will require substantive engagement of end users throughout the forecast process, funding, and training opportunities. Looking ahead, near‐term forecasting provides a hopeful future for freshwater management in the face of increased variability and risk due to global change, and we encourage the freshwater scientific community to incorporate forecasting approaches in water quality research and management.more » « less
-
Abstract Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep‐water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time‐series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyllaconcentrations, and oxygen demand across the 656‐lake dataset. Likewise, we found further support for these relationships by analyzing time‐series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake‐specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyllain high‐phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.more » « less
-
Abstract Freshwater lakes and reservoirs play a disproportionate role in the global organic carbon (OC) budget, as active sites for carbon processing and burial. Associations between OC and iron (Fe) are hypothesized to contribute substantially to the stabilization of OC in sediment, but the magnitude of freshwater Fe‐OC complexation remains unresolved. Moreover, global declines in bottom‐water oxygen concentrations have the potential to alter OC and Fe cycles in multiple ways, and the net effects of low‐oxygen (hypoxic) conditions on OC and Fe are poorly characterized. Here, we measured the pool of Fe‐bound OC (Fe‐OC) in surficial sediments from two eutrophic reservoirs, and we paired whole‐ecosystem experiments with sediment incubations to determine the effects of hypoxia on OC and Fe cycling over multiple timescales. Our experiments demonstrated that short periods (2–4 weeks) of hypoxia can increase aqueous Fe and OC concentrations while decreasing OC and Fe‐OC in surficial sediment by 30%. However, exposure to seasonal hypoxia over multiple years was associated with a 57% increase in sediment OC and no change in sediment Fe‐OC. These results suggest that the large sediment Fe‐OC pool (∼30% of sediment OC in both reservoirs) contains both oxygen‐sensitive and oxygen‐insensitive fractions, and over multiannual timescales OC respiration rates may play a more important role in determining the effect of hypoxia on sediment OC than Fe‐OC dissociation. Consequently, we anticipate that global declines in oxygen concentrations will alter OC and Fe cycling, with the direction and magnitude of effects dependent upon the duration of hypoxia.more » « less