skip to main content


This content will become publicly available on May 1, 2025

Title: Computationally characterizing the diffusive boundary layer in lakes and reservoirs
Abstract Purpose

Hypolimnetic hypoxia has become increasingly prevalent in stratified water bodies in recent decades due to climate change. One primary sink of dissolved oxygen (DO) is sediment oxygen uptake ($${J}_{{O}_{2}}$$JO2). On the water side of the sediment–water interface (SWI),$${J}_{{O}_{2}}$$JO2is controlled by a diffusive boundary layer (DBL), a millimeter-scale layer where molecular diffusion is the primary transport mechanism. In previous studies, the DBL was determined by visual inspection, which is subjective and time-consuming.

Material and methods

In this study, a computational procedure is proposed to determine the SWI and DBL objectively and automatically. The procedure was evaluated for more than 300 DO profiles in the sediment of three eutrophic water bodies spanning gradients of depth and surface area. Synthetic DO profiles were modeled based on sediment characteristics estimated by laboratory experiments. The procedure was further verified adopting the synthetic profiles.

Results and discussion

The procedure, which was evaluated for both measured and synthetic DO profiles, determined the SWI and DBL well for both steady and non-steady state DO profiles. A negative relationship between DBL thickness and aeration rates was observed, which agrees with existing literatures.

Conclusions

The procedure is recommended for future studies involving characterizing DBL to improve efficiency and consistency.

 
more » « less
Award ID(s):
1753639
PAR ID:
10518919
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of Soils and Sediments
Volume:
24
Issue:
5
ISSN:
1439-0108
Page Range / eLocation ID:
2132 to 2143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Let$$X\rightarrow {{\mathbb {P}}}^1$$XP1be an elliptically fiberedK3 surface, admitting a sequence$$\omega _{i}$$ωiof Ricci-flat metrics collapsing the fibers. LetVbe a holomorphicSU(n) bundle overX, stable with respect to$$\omega _i$$ωi. Given the corresponding sequence$$\Xi _i$$Ξiof Hermitian–Yang–Mills connections onV, we prove that, ifEis a generic fiber, the restricted sequence$$\Xi _i|_{E}$$Ξi|Econverges to a flat connection$$A_0$$A0. Furthermore, if the restriction$$V|_E$$V|Eis of the form$$\oplus _{j=1}^n{\mathcal {O}}_E(q_j-0)$$j=1nOE(qj-0)forndistinct points$$q_j\in E$$qjE, then these points uniquely determine$$A_0$$A0.

     
    more » « less
  2. Abstract

    We perform path-integral molecular dynamics (PIMD), ring-polymer MD (RPMD), and classical MD simulations of H$$_2$$2O and D$$_2$$2O using the q-TIP4P/F water model over a wide range of temperatures and pressures. The density$$\rho (T)$$ρ(T), isothermal compressibility$$\kappa _T(T)$$κT(T), and self-diffusion coefficientsD(T) of H$$_2$$2O and D$$_2$$2O are in excellent agreement with available experimental data; the isobaric heat capacity$$C_P(T)$$CP(T)obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H$$_2$$2O and D$$_2$$2O exhibit a liquid-liquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H$$_2$$2O and D$$_2$$2O can be fitted remarkably well using the Two-State-Equation-of-State (TSEOS). Using the TSEOS, we estimate that the LLCP for q-TIP4P/F H$$_2$$2O, from PIMD simulations, is located at$$P_c = 167 \pm 9$$Pc=167±9 MPa,$$T_c = 159 \pm 6$$Tc=159±6 K, and$$\rho _c = 1.02 \pm 0.01$$ρc=1.02±0.01 g/cm$$^3$$3. Isotope substitution effects are important; the LLCP location in q-TIP4P/F D$$_2$$2O is estimated to be$$P_c = 176 \pm 4$$Pc=176±4 MPa,$$T_c = 177 \pm 2$$Tc=177±2 K, and$$\rho _c = 1.13 \pm 0.01$$ρc=1.13±0.01 g/cm$$^3$$3. Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effects (i.e., atoms delocalization) play an important role in the thermodynamics of water around the LLCP (from the MD simulations of q-TIP4P/F water,$$P_c = 203 \pm 4$$Pc=203±4 MPa,$$T_c = 175 \pm 2$$Tc=175±2 K, and$$\rho _c = 1.03 \pm 0.01$$ρc=1.03±0.01 g/cm$$^3$$3). Overall, our results strongly support the LLPT scenario to explain water anomalous behavior, independently of the fundamental differences between classical MD and PIMD techniques. The reported values of$$T_c$$Tcfor D$$_2$$2O and, particularly, H$$_2$$2O suggest that improved water models are needed for the study of supercooled water.

     
    more » « less
  3. Abstract

    Let us fix a primepand a homogeneous system ofmlinear equations$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$aj,1x1++aj,kxk=0for$$j=1,\dots ,m$$j=1,,mwith coefficients$$a_{j,i}\in \mathbb {F}_p$$aj,iFp. Suppose that$$k\ge 3m$$k3m, that$$a_{j,1}+\dots +a_{j,k}=0$$aj,1++aj,k=0for$$j=1,\dots ,m$$j=1,,mand that every$$m\times m$$m×mminor of the$$m\times k$$m×kmatrix$$(a_{j,i})_{j,i}$$(aj,i)j,iis non-singular. Then we prove that for any (large)n, any subset$$A\subseteq \mathbb {F}_p^n$$AFpnof size$$|A|> C\cdot \Gamma ^n$$|A|>C·Γncontains a solution$$(x_1,\dots ,x_k)\in A^k$$(x1,,xk)Akto the given system of equations such that the vectors$$x_1,\dots ,x_k\in A$$x1,,xkAare all distinct. Here,Cand$$\Gamma $$Γare constants only depending onp,mandksuch that$$\Gamma Γ<p. The crucial point here is the condition for the vectors$$x_1,\dots ,x_k$$x1,,xkin the solution$$(x_1,\dots ,x_k)\in A^k$$(x1,,xk)Akto be distinct. If we relax this condition and only demand that$$x_1,\dots ,x_k$$x1,,xkare not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments.

     
    more » « less
  4. Abstract

    Cuprous oxide ($$\hbox {Cu}{}_2\hbox {O}$$Cu2O) has recently emerged as a promising material in solid-state quantum technology, specifically for its excitonic Rydberg states characterized by large principal quantum numbers (n). The significant wavefunction size of these highly-excited states (proportional to$$n^2$$n2) enables strong long-range dipole-dipole (proportional to$$n^4$$n4) and van der Waals interactions (proportional to$$n^{11}$$n11). Currently, the highest-lying Rydberg states are found in naturally occurring$$\hbox {Cu}_2\hbox {O}$$Cu2O. However, for technological applications, the ability to grow high-quality synthetic samples is essential. The fabrication of thin-film$$\hbox {Cu}{}_2\hbox {O}$$Cu2Osamples is of particular interest as they hold potential for observing extreme single-photon nonlinearities through the Rydberg blockade. Nevertheless, due to the susceptibility of high-lying states to charged impurities, growing synthetic samples of sufficient quality poses a substantial challenge. This study successfully demonstrates the CMOS-compatible synthesis of a$$\hbox {Cu}{}_2\hbox {O}$$Cu2Othin film on a transparent substrate that showcases Rydberg excitons up to$$n = 8$$n=8which is readily suitable for photonic device fabrications. These findings mark a significant advancement towards the realization of scalable and on-chip integrable Rydberg quantum technologies.

     
    more » « less
  5. Abstract

    Let$$(h_I)$$(hI)denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ID, the set of dyadic intervals and$$h_I\otimes h_J$$hIhJdenote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$(s,t)hI(s)hJ(t),$$I,J\in \mathcal {D}$$I,JD. We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$V(δ2)of$$h_I\otimes h_J$$hIhJ,$$I,J\in \mathcal {D}$$I,JD. This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$Lp[0,1]or the Hardy spaces$$H^p[0,1]$$Hp[0,1],$$1\le p < \infty $$1p<. We say that$$D:X(Y)\rightarrow X(Y)$$D:X(Y)X(Y)is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$D(hIhJ)=dI,JhIhJ, where$$d_{I,J}\in \mathbb {R}$$dI,JR, and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$C:V(δ2)V(δ2)given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ChIhJ=hIhJif$$|I|\le |J|$$|I||J|, and$$\mathcal {C} h_I\otimes h_J = 0$$ChIhJ=0if$$|I| > |J|$$|I|>|J|, as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$D:X(Y)X(Y), there exist$$\lambda ,\mu \in \mathbb {R}$$λ,μRsuch that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$λC+μ(Id-C)approximately 1-projectionally factors throughD,i.e., for all$$\eta > 0$$η>0, there exist bounded operatorsABso thatABis the identity operator$${{\,\textrm{Id}\,}}$$Id,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$A·B=1and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$λC+μ(Id-C)-ADB<η. Additionally, if$$\mathcal {C}$$Cis unbounded onX(Y), then$$\lambda = \mu $$λ=μand then$${{\,\textrm{Id}\,}}$$Ideither factors throughDor$${{\,\textrm{Id}\,}}-D$$Id-D.

     
    more » « less