skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1753916

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The solidification of a putative magma ocean sets the stage for subsequent subsolidus mantle convection. Whereas it may have resulted in a compositionally stratified mantle, the efficiency of relevant processes to cause chemical differentiation, such as crystal accumulation and matrix compaction, remains uncertain. The purpose of this study is to present the thermochemical structure of end‐member cases where potential differentiation mechanisms are taking full effect. We employ a self‐consistent thermodynamic model to make our model consistent in both thermal and chemical aspects. The accumulation of crystals at the base of magma ocean can enrich the upper mantle with iron, but such a global‐scale compositional stratification is likely to be quickly eliminated by gravitational instability, leaving small‐scale heterogeneities only. On the other hand, the compaction of solid matrix in the deep mantle creates a long‐lasting molten layer above the core‐mantle boundary. Our results suggest that the efficiency of compaction is the key factor to generate compositional stratification during solidification. 
    more » « less
  2. Abstract We present a new method to construct an internally consistent thermodynamic model using a compilation of high‐pressure melting experiments. The steepest descent method and Monte Carlo sampling are combined to constrain all model parameters simultaneously instead of determining each parameter sequentially from relevant experiments. Our approach is applied to the published melting experiments on mantle materials to obtain the thermodynamic parameters of the MgO‐FeO‐SiO2ternary system. Inversion with the subsets of experimental data is conducted as well to investigate the source of discrepancy among existing studies, and the key parameters are found to be the thermal expansivity of SiO2and the excess volume of mixing between MgO and SiO2. Mixing between FeO and SiO2is only constrained with large uncertainty, which could also imply that oxides with low concentrations have minimal effects on melting. Constraining the thermodynamics of MgO and SiO2will be important for a better understanding of mantle melting at high pressures. 
    more » « less
  3. Abstract Exposed continents are one of Earth's major characteristics. Recent studies on ancient ocean volume and exposed landmasses suggest, however, that early Earth was possibly a water world, where any significant landmass was unlikely to have risen above sea level. On modern Earth, the thickness of continental crust seems to be controlled by sea level and the buoyancy of continental crust. Simply applying this concept to the Archean would not explain the absence of exposed continents, and we suggest that a third element that is currently insignificant was important during early Earth: the strength of continental upper crust. Based on the pressure imbalance expected at continent-ocean boundaries, we quantified the conditions under which rock strength controls the thickness of continental crust. With the level of radiogenic heat production expected for early Earth, continents may have been too weak to have maintained their thickness against a deep ocean. 
    more » « less
  4. Halogens are important tracers of various planetary formation and evolution processes, and an accurate understanding of their abundances in the Earth’s silicate reservoirs can help us reconstruct the history of interactions among mantle, atmosphere, and oceans. The previous studies of halogen abundances in the bulk silicate Earth (BSE) are based on the assumption of constant ratios of element abundances, which is shown to result in a gross underestimation of the BSE halogen budget. Here we present a more robust approach using a log-log linear model. Using this method, we provide an internally consistent estimate of halogen abundances in the depleted mid-ocean ridge basalts (MORB)-source mantle, the enriched ocean island basalts (OIB)-source mantle, the depleted mantle, and BSE. Unlike previous studies, our results suggest that halogens in BSE are not more depleted compared to elements with similar volatility, thereby indicating sufficient halogen retention during planetary accretion. According to halogen abundances in the depleted mantle and BSE, we estimate that ∼87% of all stable halogens reside in the present-day mantle. Given our understanding of the history of mantle degassing and the evolution of crustal recycling, the revised halogen budget suggests that deep halogen cycle is characterized by efficient degassing in the early Earth and subsequent net regassing in the rest of Earth history. Such an evolution of deep halogen cycle presents a major step toward a more comprehensive understanding of ancient ocean alkalinity, which affects carbon partitioning within the hydrosphere, the stability of crustal and authigenic minerals, and the development of early life. 
    more » « less
  5. The presence of exposed land on the early Earth is a prerequisite for a certain type of prebiotic chemical evolution in which the oscillating activity of water, driven by short-term, day–night, and seasonal cycles, facilitates the synthesis of proto-biopolymers. Exposed land is, however, not guaranteed to exist on the early Earth, which is likely to have been drastically different from the modern Earth. This mini-review attempts to provide an up-to-date account on the possibility of exposed land on the early Earth by integrating recent geological and geophysical findings. Owing to the competing effects of the growing ocean and continents in the Hadean, a substantial expanse of the Earth’s surface (∼20% or more) could have been covered by exposed continents in the mid-Hadean. In contrast, exposed land may have been limited to isolated ocean islands in the late Hadean and early Archean. The importance of exposed land during the origins of life remains an open question. 
    more » « less