skip to main content


Search for: All records

Award ID contains: 1754106

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Primary production, a key regulator of the global carbon cycle, is highly responsive to variations in climate. Yet, a detailed, continental‐scale risk assessment of climate‐related impacts on primary production is lacking. We combined 16 years of MODIS NDVI data, a remotely sensed proxy for primary production, with observations from 1218 climate stations to derive values of ecosystem sensitivity to precipitation and aridity. For the first time, we produced an empirically‐derived map of ecosystem sensitivity to climate across the conterminous United States. Over this 16‐year period, annual primary production values were most sensitive to precipitation and aridity in dryland and grassland ecosystems. Century‐long trends measured at the climate stations showed intensifying aridity and climatic variability in many of these sensitive regions. Dryland ecosystems in the western US may be particularly vulnerable to reductions in primary production and consequent degradation of ecosystem services as climate change and variability increase in the future.

     
    more » « less
  2. Abstract

    Climate‐change assessments project increasing precipitation variability through increased frequency of extreme events. However, the effects of interannual precipitation variance per se on ecosystem functioning have been largely understudied. Here, we report on the effects of interannual precipitation variability on the primary production of global drylands, which include deserts, steppes, shrublands, grasslands, and prairies and cover about 40% of the terrestrial earth surface. We used a global database that has 43 datasets, which are uniformly distributed in parameter space and each has at least 10 years of data. We found (a) that at the global scale, precipitation variability has a negative effect on aboveground net primary production. (b) Expected increases in interannual precipitation variability for the year 2,100 may result in a decrease of up to 12% of the global terrestrial carbon sink. (c) The effect of precipitation interannual variability on dryland productivity changes from positive to negative along a precipitation gradient. Arid sites with mean precipitation under 300 mm/year responded positively to increases in precipitation variability, whereas sites with mean precipitation over 300 mm/year responded negatively. We propose three complementary mechanisms to explain this result: (a) concave‐up and concave‐down precipitation–production relationships in arid vs. humid systems, (b) shift in the distribution of water in the soil profile, and (c) altered frequency of positive and negative legacies. Our results demonstrated that enhanced precipitation variability will have direct impacts on global drylands that can potentially affect the future terrestrial carbon sink.

     
    more » « less
  3. Interactions among grazing pressure, climate, soil properties, and biodiversity affect ecosystem services provided by drylands. 
    more » « less
  4. Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously. 
    more » « less
  5. Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries to millennia.

     
    more » « less