skip to main content

Title: Sensitivity of primary production to precipitation across the United States

Primary production, a key regulator of the global carbon cycle, is highly responsive to variations in climate. Yet, a detailed, continental‐scale risk assessment of climate‐related impacts on primary production is lacking. We combined 16 years of MODIS NDVI data, a remotely sensed proxy for primary production, with observations from 1218 climate stations to derive values of ecosystem sensitivity to precipitation and aridity. For the first time, we produced an empirically‐derived map of ecosystem sensitivity to climate across the conterminous United States. Over this 16‐year period, annual primary production values were most sensitive to precipitation and aridity in dryland and grassland ecosystems. Century‐long trends measured at the climate stations showed intensifying aridity and climatic variability in many of these sensitive regions. Dryland ecosystems in the western US may be particularly vulnerable to reductions in primary production and consequent degradation of ecosystem services as climate change and variability increase in the future.

more » « less
Award ID(s):
1754106 1832194
Author(s) / Creator(s):
 ;  ;  ;  ;  ;
Publisher / Repository:
Date Published:
Journal Name:
Ecology Letters
Page Range / eLocation ID:
p. 527-536
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Le_Bagousse-Pinguet, Yoann (Ed.)
    Root production influences carbon and nutrient cycles and subsidizes soil biodiversity. However, the long‐term dynamics and drivers of belowground production are poorly understood for most ecosystems. In drylands, fire, eutrophication, and precipitation regimes could affect not only root production but also how roots track interannual variability in climate. We manipulated the intra‐annual precipitation regime, soil nitrogen, and fire in four common Chihuahuan Desert ecosystem types (three grasslands and one shrubland) in New Mexico, USA, where the 100‐year record indicates both long‐term drying and increasing interannual variability in aridity. First, we evaluated how root production tracked aridity over 10–17 years using climate sensitivity functions, which quantify long‐term, nonlinear relationships between biological processes and climate. Next, we determined the degree to which perturbations by fire, nitrogen addition or intra‐annual rainfall altered the sensitivity of root production to both mean and interannual variability in aridity. All ecosystems had nonlinear climate sensitivities that predicted declines in production with increases in the interannual variance of aridity. However, root production was the most sensitive to aridity in Chihuahuan Desert shrubland, with reduced production under drier and more variable aridity. Among the perturbations, only fire altered the sensitivity of root production to aridity. Root production was more than twice as sensitive to declines with aridity following prescribed fire than in unburned conditions. Neither the intra‐annual seasonal rainfall regime nor chronic nitrogen fertilization altered the sensitivity of roots to aridity. Our results yield new insight into how dryland plant roots respond to climate change. Our comparison of dryland ecosystems of the northern Chihuahuan Desert predicted that root production in shrublands would be more sensitive to future climates that are drier and more variable than root production in dry grasslands. Field manipulations revealed that fire could amplify the climate sensitivity of dry grassland root production, but in contrast, the climate sensitivity of root production was largely resistant to changes in the seasonal rainfall regime or increased soil fertilization. 
    more » « less
  2. Abstract

    Water‐limited ecosystems are highly sensitive to not only precipitation amount, but also precipitation pattern, particularly variability in the size and timing of growing season rainfall events. Both rainfall event size and timing are expected to be altered by climate change, but the relative responses of dryland ecosystems to changes in rainfall event size versus timing have not been resolved. Here, we disentangle the effects of these different aspects of precipitation pattern on ecosystem dynamics.

    We experimentally assessed how these two aspects of rainfall variability impacted a semi‐arid grassland ecosystem by altering an ambient precipitation pattern to eliminate variability in (a) rainfall event size (all events were made the same size), (b) rainfall event timing (all events were uniformly spaced in time) and (c) both. Total precipitation amount was constant for all treatments. We measured responses of soil moisture, ecosystem carbon flux (e.g. net primary production and soil CO2flux), plant community composition and physiological responses of the dominant C4grass,Bouteloua gracilis.

    Removing variability in rainfall event size altered ecosystem dynamics more than a pattern of uniform event timing, but the largest impact occurred when variability in both were removed. Notably, eliminating variability in both event size and timing increased above‐ground net primary productivity by 23%, consistent with reduced water stress in the dominant C4grass, while also reducing seasonal variability in soil CO2flux by 35%, reflecting lower seasonal variability in soil moisture.

    Synthesis. Unique responses to different aspects of precipitation variability highlight the complexity of predicting how dryland ecosystems will be affected by climate change‐induced shifts in rainfall patterns. Our results provide novel support for the key roles of rainfall event size and timing, in addition to total precipitation amount, as determinants of ecosystem function.

    more » « less
  3. Abstract

    Understanding the sensitivity of ecosystem production and respiration to climate change is critical for predicting terrestrial carbon dynamics. Here we show that the primary control on the inter-annual variability of net ecosystem carbon exchange switches from production to respiration at a precipitation threshold between 750 and 950 mm yr−1in the contiguous United States. This precipitation threshold is evident across multiple datasets and scales of observation indicating that it is a robust result and provides a new scaling relationship between climate and carbon dynamics. However, this empirical precipitation threshold is not captured by dynamic global vegetation models, which tend to overestimate the sensitivity of production and underestimate the sensitivity of respiration to water availability in more mesic regions. Our results suggest that the short-term carbon balance of ecosystems may be more sensitive to respiration losses than previously thought and that model simulations may underestimate the positive carbon–climate feedbacks associated with respiration.

    more » « less
  4. Abstract

    Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes inNPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations betweenNPPand precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta‐analytical techniques to search for generalities and asymmetries of abovegroundNPP(ANPP) and belowgroundNPP(BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) ofBNPPwas similar under precipitation additions and reductions, butANPPwas more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven byANPPresponses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change experiments. Additionally, policy and land management decisions related to global change scenarios should consider howANPPandBNPPresponses may differ, and that ecosystem responses to extreme events might not be predicted from relationships found under moderate environmental changes.

    more » « less
  5. Abstract

    Anticipating the ability of ecosystems to maintain functional integrity across predicted altered precipitation regimes remains a grand ecohydrological challenge. Overstory trees and understory grasses within semiarid savannas vary in their structure and sensitivity to environmental pressures, underscoring the need to examine the ecohydrological implications of this climatic variability. Whereas precipitation has long been recognized as a key driver of landscape ecohydrology, understanding a site's hydraulic redistribution regime (the balance in downward and upward movement of water and the seasonality of these bidirectional flows) may be equally important to understanding moisture availability to vegetation in these dryland ecosystems. As a result, we linked measures of ecosystem‐scale carbon exchange, overstory tree sap flux and leaf‐level gas exchange to understory whole‐plot and leaf‐level carbon and water exchange within intact and trenched plots (isolating trees from grasses) in a riparian savanna ecosystem. We maintained measurements across 2 years with distinct precipitation regimes. We found that interannual precipitation variability yielded a categorical shift in the directionality and magnitude of the hydraulic redistribution regime—even within this single site. Additionally, we found that connectivity between overstory trees and understory grasses through hydraulic redistribution created a short period of competition within an average rain year but that facilitation of understory function by overstory trees was much greater and lasted longer during drier years. Together, these findings suggest that hydraulic redistribution can serve as a hydrologic buffer against interannual precipitation variability. Given current climate projections of more variable precipitation within and across years, understanding how hydraulic redistribution regimes vary through time will greatly enhance our capacity to anticipate future ecohydrological function.

    more » « less