skip to main content


Search for: All records

Award ID contains: 1754394

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The survival of insects that are dormant in winter may either increase or decrease as a consequence of elevated winter temperatures under climate change. Warming can be deleterious when metabolism of the overwintering life stages increases to the point that energy reserves are exhausted before postoverwintering reemergence. We examined experimentally how overwintering survival of swallow bugs (Hemiptera: Cimicidae: Cimex vicarius Horvath), an ectoparasite primarily of cliff swallows (Passeriformes: Hirundinidae: Petrochelidon pyrrhonota Vieillot), was affected by a 3°C rise in mean daily temperature for populations in Oklahoma, Nebraska, and North Dakota. Adult and nymphal swallow bugs exposed to elevated temperature had an average reduction of approximately 31% in overwintering survival (from July/August to April/May), relative to controls exposed to current region-specific ambient-like conditions. Adult males in both groups survived less well in Nebraska and North Dakota than adult males in Oklahoma, but there was no consistent latitudinal effect of the elevated heat treatment. Our results indicate that projected increases in mean temperature in the Great Plains by 2050 could result in fewer swallow bugs surviving the winter and thus a reduced population size upon the arrival of their primary host in the spring, potentially affecting cliff swallow reproductive success, site use, and breeding phenology. Global climate change may alter the dynamics of host–parasite systems by reducing overall parasite abundance.

     
    more » « less
  2. Abstract

    In recent decades, the world has witnessed a remarkable resurgence of bedbugs (Hemiptera: Cimicidae). Although populations of the common bedbug,Cimex lectulariusL., expanded in temperate regions of its original distribution, the tropical bedbug,C. hemipterus(F.), increased its abundance in warmer regions, where it also had been historically distributed. However,C. hemipterushas recently been observed to be expanding to other areas, e.g. North Australia, Middle East, the United States and Russia. In other parts of Europe, few sporadic and ephemeral introductions ofC. hemipteruswere recorded until recently. We conducted an extensive sampling of European bedbug populations starting in 2002 and found thatC. hemipterushas recently become locally established. Among 566 examined infestations, nearly all of which involvedC. lectularius,C. hemipterusoccurred in six infestations collected since 2019. In at least three cases, the social background of inhabitants of the infested properties indicated that tropical bedbugs likely spread within local communities. Using cytochrome oxidase subunit I, we linked five of the infestations to the most common haplotype found globally, and one to an African haplotype. In all infestations, we observed twokdr‐associated mutations in the sodium channel gene, which are also commonly found across the world.

     
    more » « less
  3. Over the past three decades, the bed bug Cimex lectularius has resurged as a prominent indoor pest on a global scale. Knockdown-associated insecticide resistance (kdr) involving the voltage-gated sodium channel, targeted by organochlorine and pyrethroid insecticides, was first reported in C. lectularius within a few years of the widespread use of dichlorodiphenyltrichloroethane (DDT) and has been implicated as a significant factor contributing to the species’ recent resurgence. Since then, selection with pyrethroid insecticides has intensified, yet little is known regarding its short-term impacts on the frequency of kdr-associated mutations. Here, we report temporal changes in the frequencies of three kdr-associated mutations in C. lectularius populations collected across the USA from two time periods, sampled approximately a decade apart. The results reveal a significant increase in the frequencies of kdr-associated mutations over this period and the absence of the insecticide-susceptible genotype in recent collections. Furthermore, a significant transition was observed toward infestations possessing multiple kdr-associated mutations. These findings suggest that the persistent use of pyrethroid insecticides over the past decade continues to impose strong selection pressure on C. lectularius populations, driving the proliferation of kdr-associated mutations. They demonstrate that, if unabated, strong anthropogenic selection can drive the rapid evolution of adaptive traits. 
    more » « less
  4. null (Ed.)
  5. Pereira, R (Ed.)
    Abstract In recent years, bed bugs have experienced a remarkable resurgence on a near global scale. While reports have primarily focused on the common bed bug, Cimex lectularius (L.), which has resurged largely in temperate regions, in tropical regions the tropical bed bug, Cimex hemipterus (F.) (Hemiptera: Cimicidae), has reemerged as well. Recent reports of C. hemipterus introductions to subtropical and temperate regions, outside of the species natural distribution, suggest the potential for establishment and further spread. Establishment may be aided by insecticide resistance mechanisms, such as the presence of knockdown resistance (kdr)-associated mutations, which potentially confer resistance to pyrethroid, pyrethrin, and organochloride insecticides. Here, we present the first report of the detection and likely establishment of C. hemipterus in Honolulu, Hawaii, from samples collected in 2009 and 2019. Furthermore, through partial sequencing of the voltage-gated sodium channel, we report the presence of kdr-associated mutations in all samples. These findings have implications for the implementation of control strategies aimed at eradicating infestations. 
    more » « less
  6. Abstract Despite awareness of the mutations conferring insecticide resistance in the bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), within the United States few studies address the distribution and frequency of these. Within the United States, studies have focused on collections made along the East Coast and Midwest, documenting the occurrence of two mutations (V419L and L925I) within the voltage-gated sodium channel α-subunit gene shown to be associated with knockdown resistance (kdr) to pyrethroids. Here, the distribution and frequency of the V419L and L925I site variants is reported from infestations sampled within Oklahoma and its immediately adjacent states. Additionally, the presence of a mutation previously undocumented in the United States (I935F) is noted. While novel in the United States, this mutation has previously been reported in Australian and Old World populations. No infestations were found to harbor wild-type individuals, and hence susceptible, at each of the three sites. Instead, ~21% were found to possess the resistant mutation at the L925I site (haplotype B), ~77% had mutations at both the V419L and L925I sites (haplotype C), and 2% possessed the mutation at the L936F site (haplotype Ab). The high frequency of haplotype C corresponds to previous studies in the United States, and contrasts dramatically with those of the Old World and Australia. The data presented here provide insight into the contemporary occurrence of kdr-associated insecticide resistance in the South Central United States, a region for which data have previously been absent. These data suggest that New World and Old World/Australian infestations are likely to have originated from different origins. 
    more » « less