skip to main content


Search for: All records

Award ID contains: 1755229

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Barnacles can reveal much about the physiology, health, and spatial ecology of their cetacean hosts. Here, we examine how temperature and hydrodynamic factors impact presence ofXenobalanus globicipitis, a pseudo‐stalked barnacle that attaches exclusively to cetaceans. We hypothesized that temperature is a key environmental factor (i.e., water temperature) and physiological factor, in thatX. globicipitisprefers the warmest skin temperature for attachment, possibly as a mechanism for survival in colder waters. First, we demonstrate a global relationship between spatial ecology of host species and presence ofX. globicipitis. Notably,X. globicipitisis absent in the four species occupying waters with the lowest sea surface temperature (SST) year‐round, but present in migratory species that likely acquire the barnacle in waters with higher SST. Second, barnacle attachment location on common bottlenose dolphin (Tursiops truncatus) dorsal fins corresponds with fin temperature and hydrodynamics. Although body temperature may influence attachment location on the body of the animal, hydrodynamic forces, as previously proposed, determine how well barnacles can remain attached during the adult stage.X. globicipitisprevalence likely provides important bioindicator, ecological, and physiological information about its host. As parasitic infestation has some cost, these results have implications for cetacean health in warming seas.

     
    more » « less
  2. Abstract

    Resource competition among conspecifics is central to social evolution, as it serves as one of the primary selective pressures of group living. This is because the degree of competition for resources impacts the costs and benefits of social interactions. Despite this, how heterogeneity in resource competition drives variation in the type and quantity of long-term social relationships individuals foster has been overlooked. By measuring male mating competition and female foraging competition in a highly social, long-lived mammal, we demonstrate that individual variation in long-term intrasexual social relationships covaries with preferred habitat and experienced resource competition, and this effect differs based on the sex of the individual. Specifically, greater resource competition resulted in fewer social preferences, but the magnitude of the effect varied by both habitat and sex, whereas for social avoidances, both the directionality and magnitude of the effect of resource competition varied by habitat and sex. Together our work shows how fine-scale variation in individual socioecological niches (i.e., unique physical and social environments) can drive extensive variation in individual social behavior (here long-term relationships) within a population, thereby broadening current theories of social evolution.

     
    more » « less
  3. Abstract

    Behavioral phenotypic traits or “animal personalities” drive critical evolutionary processes such as fitness, disease and information spread. Yet thestability of behavioral traits, essential by definition, has rarely been measured over developmentally significant periods of time, limiting our understanding of how behavioral stability interacts with ontogeny. Based on 32 years of social behavioral data for 179 wild bottlenose dolphins, we show that social traits (associate number, time alone and in large groups) are stable from infancy to late adulthood. Multivariate analysis revealed strong relationships between these stable metrics within individuals, suggesting a complex behavioral syndrome comparable to human extraversion. Maternal effects (particularly vertical social learning) and sex-specific reproductive strategies are likely proximate and ultimate drivers for these patterns. We provide rare empirical evidence to demonstrate the persistence of social behavioral traits over decades in a non-human animal.

     
    more » « less
  4. Abstract

    Kinship plays a fundamental role in the evolution of social systems and is considered a key driver of group living. To understand the role of kinship in the formation and maintenance of social bonds, accurate measures of genetic relatedness are critical. Genotype‐by‐sequencing technologies are rapidly advancing the accuracy and precision of genetic relatedness estimates for wild populations. The ability to assign kinship from genetic data varies depending on a species’ or population's mating system and pattern of dispersal, and empirical data from longitudinal studies are crucial to validate these methods. We use data from a long‐term behavioural study of a polygynandrous, bisexually philopatric marine mammal to measure accuracy and precision of parentage and genetic relatedness estimation against a known partial pedigree. We show that with moderate but obtainable sample sizes of approximately 4,235 SNPs and 272 individuals, highly accurate parentage assignments and genetic relatedness coefficients can be obtained. Additionally, we subsample our data to quantify how data availability affects relatedness estimation and kinship assignment. Lastly, we conduct a social network analysis to investigate the extent to which accuracy and precision of relatedness estimation improve statistical power to detect an effect of relatedness on social structure. Our results provide practical guidance for minimum sample sizes and sequencing depth for future studies, as well as thresholds for post hoc interpretation of previous analyses.

     
    more » « less
  5. Abstract

    Genetic diversity is essential for populations to adapt to changing environments. Measures of genetic diversity are often based on selectively neutral markers, such as microsatellites. Genetic diversity to guide conservation management, however, is better reflected by adaptive markers, including genes of the major histocompatibility complex (MHC). Our aim was to assess MHC and neutral genetic diversity in two contrasting bottlenose dolphin (Tursiops aduncus) populations in Western Australia—one apparently viable population with high reproductive output (Shark Bay) and one with lower reproductive output that was forecast to decline (Bunbury). We assessed genetic variation in the two populations by sequencing the MHC class II DQB, which encompasses the functionally important peptide binding regions (PBR). Neutral genetic diversity was assessed by genotyping twenty‐three microsatellite loci.

    We confirmed that MHC is an adaptive marker in both populations. Overall, the Shark Bay population exhibited greater MHC diversity than the Bunbury population—for example, it displayed greater MHC nucleotide diversity. In contrast, the difference in microsatellite diversity between the two populations was comparatively low.

    Our findings are consistent with the hypothesis that viable populations typically display greater genetic diversity than less viable populations. The results also suggest that MHC variation is more closely associated with population viability than neutral genetic variation. Although the inferences from our findings are limited, because we only compared two populations, our results add to a growing number of studies that highlight the usefulness of MHC as a potentially suitable genetic marker for animal conservation. The Shark Bay population, which carries greater adaptive genetic diversity than the Bunbury population, is thus likely more robust to natural or human‐induced changes to the coastal ecosystem it inhabits.

     
    more » « less
  6. Research on sex biases in longevity in mammals often assumes that male investment in competition results in a female survival advantage that is constant throughout life. We use 35 years of longitudinal data on 1003 wild bottlenose dolphins ( Tursiops aduncus ) to examine age-specific mortality, demonstrating a time-varying effect of sex on mortality hazard over the five-decade lifespan of a social mammal. Males are at higher risk of mortality than females during the juvenile period, but the gap between male and female mortality hazard closes in the mid-teens, coincident with the onset of female reproduction. Female mortality hazard is non-significantly higher than male mortality hazard in adulthood, resulting in a moderate male bias in the oldest age class. Bottlenose dolphins have an intensely male-competitive mating system, and juvenile male mortality has been linked to social competition. Contrary to predictions from sexual selection theory, however, male–male competition does not result in sustained male-biased mortality. As female dolphins experience high costs of sexual coercion in addition to long and energetically expensive periods of gestation and lactation, this suggests that substantial female investment in reproduction can elevate female mortality risk and impact sex biases in lifespan. 
    more » « less
    Free, publicly-accessible full text available July 26, 2024