skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sex bias in mortality risk changes over the lifespan of bottlenose dolphins
Research on sex biases in longevity in mammals often assumes that male investment in competition results in a female survival advantage that is constant throughout life. We use 35 years of longitudinal data on 1003 wild bottlenose dolphins ( Tursiops aduncus ) to examine age-specific mortality, demonstrating a time-varying effect of sex on mortality hazard over the five-decade lifespan of a social mammal. Males are at higher risk of mortality than females during the juvenile period, but the gap between male and female mortality hazard closes in the mid-teens, coincident with the onset of female reproduction. Female mortality hazard is non-significantly higher than male mortality hazard in adulthood, resulting in a moderate male bias in the oldest age class. Bottlenose dolphins have an intensely male-competitive mating system, and juvenile male mortality has been linked to social competition. Contrary to predictions from sexual selection theory, however, male–male competition does not result in sustained male-biased mortality. As female dolphins experience high costs of sexual coercion in addition to long and energetically expensive periods of gestation and lactation, this suggests that substantial female investment in reproduction can elevate female mortality risk and impact sex biases in lifespan.  more » « less
Award ID(s):
2106909 2146995 1755229
PAR ID:
10442352
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
290
Issue:
2003
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Taborsky, Michael (Ed.)
    Abstract The juvenile period is a challenging life-history stage, especially in species with a high degree of fission–fusion dynamics, such as bottlenose dolphins, where maternal protection is virtually absent. Here, we examined how juvenile male and female bottlenose dolphins navigate this vulnerable period. Specifically, we examined their grouping patterns, activity budget, network dynamics, and social associations in the absence of adults. We found that juveniles live in highly dynamic groups, with group composition changing every 10 min on average. Groups were generally segregated by sex, and segregation was driven by same-sex preference rather than opposite-sex avoidance. Juveniles formed strong associations with select individuals, especially kin and same-sex partners, and both sexes formed cliques with their preferred partners. Sex-specific strategies in the juvenile period reflected adult reproductive strategies, in which the exploration of potential social partners may be more important for males (which form long-term alliances in adulthood) than females (which preferentially associate with kin in adulthood). Females spent more time alone and were more focused on foraging than males, but still formed close same-sex associations, especially with kin. Males cast a wider social net than females, with strong same-sex associations and many male associates. Males engaged in more affiliative behavior than females. These results are consistent with the social bonds and skills hypothesis and suggest that delayed sexual maturity in species with relational social complexity may allow individuals to assess potential associates and explore a complex social landscape without the risks associated with sexual maturity (e.g., adult reproductive competition; inbreeding). 
    more » « less
  2. Barrett, Louise (Ed.)
    Abstract Direct pathogen and parasite transmission is fundamentally driven by a population’s contact network structure and its demographic composition and is further modulated by pathogen life-history traits. Importantly, populations are most often concurrently exposed to a suite of pathogens, which is rarely investigated, because contact networks are typically inferred from spatial proximity only. Here, we use 5 years of detailed observations of Indo-Pacific bottlenose dolphins (Tursiops aduncus) that distinguish between four different types of social contact. We investigate how demography (sex and age) affects these different social behaviors. Three of the four social behaviors can be used as a proxy for understanding key routes of direct pathogen transmission (sexual contact, skin contact, and aerosol contact of respiratory vapor above the water surface). We quantify the demography-dependent network connectedness, representing the risk of exposure associated with the three pathogen transmission routes, and quantify coexposure risks and relate them to individual sociability. Our results suggest demography-driven disease risk in bottlenose dolphins, with males at greater risk than females, and transmission route-dependent implications for different age classes. We hypothesize that male alliance formation and the divergent reproductive strategies in males and females drive the demography-dependent connectedness and, hence, exposure risk to pathogens. Our study provides evidence for the risk of coexposure to pathogens transmitted along different transmission routes and that they relate to individual sociability. Hence, our results highlight the importance of a multibehavioral approach for a more complete understanding of the overall pathogen transmission risk in animal populations, as well as the cumulative costs of sociality. 
    more » « less
  3. Abstract Female reproductive maturation is a critical life-history milestone, initiating an individual’s reproductive career. Studies in social mammals have often focused on how variables related to nutrition influence maturation age in females. However, parallel investigations have identified conspicuous male-mediated effects in which female maturation is sensitive to the presence and relatedness of males. Here, we evaluated whether the more “classic” socioecological variables (i.e., maternal rank, group size) predict maturation age in wild geladas—a primate species with known male-mediated effects on maturation and a grassy diet that is not expected to generate intense female competition. Females delayed maturation in the presence of their fathers and quickly matured when unrelated, dominant males arrived. Controlling for these male effects, however, higher-ranking daughters matured at earlier ages than lower-ranking daughters, suggesting an effect of within-group contest competition. However, contrary to predictions related to within-group scramble competition, females matured earliest in larger groups. We attribute this result to either: 1) a shift to “faster” development in response to the high infant mortality risk posed by larger groups; or 2) accelerated maturation triggered by brief, unobserved male visits. While earlier ages at maturation were indeed associated with earlier ages at first birth, these benefits were occasionally offset by male takeovers, which can delay successful reproduction via spontaneous abortion. In sum, rank-related effects on reproduction can still occur even when socioecological theory would predict otherwise, and males (and the risks they pose) may prompt female maturation even outside of successful takeovers. 
    more » « less
  4. Abstract Many mammalian species display sex differences in the frequency of play behavior, yet the animal literature includes few longitudinal studies of play, which are important for understanding the developmental timing of sex differences and the evolutionary functions of play. We analyzed social play, solitary play, and grooming using an 18‐year data set on 38 wild white‐faced capuchin monkeys (Cebus capucinus) followed since infancy. Rates of each behavior were measured as the proportion of point samples taken during focal follows in which the individual engaged in each behavior. To determine sex differences in these rates, we ran a series of generalized linear mixed models, considering both linear and quadratic effects of age, and chose the optimal model for each of the three behavioral outcomes based on information criteria. Rates of both social play and solitary play decreased with age, with the exception of social play in males, which increased in the early juvenile period before decreasing. Male and female capuchins had different developmental patterns of social play, with males playing more than females during most of the juvenile period, but they did not display meaningful sex differences in solitary play rates. Additionally, males and females had different patterns of grooming over the lifespan: males participated in grooming at low rates throughout their lives, while adult females participated in grooming at much higher rates, peaking around age 11 years before declining. We suggest that male and female white‐faced capuchins may adopt alternative social bonding strategies, including different developmental timing and different behaviors (social play for males vs. grooming for females). Our results were consistent with two functional hypotheses of play, the practice and bonding hypotheses. This study demonstrates that play behavior may be critical for the development of sex‐specific social strategies and emphasizes the importance of developmental perspectives on social behaviors. 
    more » « less
  5. Abstract Many organisms can reproduce both asexually and sexually. For cyclical parthenogens, periods of asexual reproduction are punctuated by bouts of sexual reproduction, and the shift from asexual to sexual reproduction has large impacts on fitness and population dynamics. We studied populations ofDaphnia dentiferato determine the amount of investment in sexual reproduction as well as the factors associated with variation in investment in sex. To do so, we tracked host density, infections by nine different parasites, and sexual reproduction in 15 lake populations ofD. dentiferafor 3 years. Sexual reproduction was seasonal, with male and ephippial female production beginning as early as late September and generally increasing through November. However, there was substantial variation in the prevalence of sexual individuals across populations, with some populations remaining entirely asexual throughout the study period and others shifting almost entirely to sexual females and males. We found strong relationships between density, prevalence of infection, parasite species richness, and sexual reproduction in these populations. However, strong collinearity between density, parasitism, and sexual reproduction means that further work will be required to disentangle the causal mechanisms underlying these relationships. 
    more » « less