skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1755901

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Temporal event sequence alignment has been used in many domains to visualize nuanced changes and interactions over time. Existing approaches align one or two sentinel events. Overview tasks require examining all alignments of interest using interaction and time or juxtaposition of many visualizations. Furthermore, any event attribute overviews are not closely tied to sequence visualizations. We present SEQUENCE BRAIDING, a novel overview visualization for temporal event sequences and attributes using a layered directed acyclic network. SEQUENCE BRAIDING visually aligns many temporal events and attribute groups simultaneously and supports arbitrary ordering, absence, and duplication of events. In a controlled experiment we compare SEQUENCE BRAIDING and IDMVis on user task completion time, correctness, error, and confidence. Our results provide good evidence that users of SEQUENCE BRAIDING can understand high-level patterns and trends faster and with similar error. A full version of this paper with all appendices; the evaluation stimuli, data, and analysis code; and source code are available at osf.io/mq2wt. 
    more » « less
  2. Timelines are commonly represented on a horizontal line, which is not necessarily the most effective way to visualize temporal event sequences. However, few experiments have evaluated how timeline shape influences task performance. We present the design and results of a controlled experiment run on Amazon Mechanical Turk (n=192) in which we evaluate how timeline shape affects task completion time, correctness, and user preference. We tested 12 combinations of 4 shapes --- horizontal line, vertical line, circle, and spiral — and 3 data types — recurrent, non-recurrent, and mixed event sequences. We found good evidence that timeline shape meaningfully affects user task completion time but not correctness and that users have a strong shape preference. Building on our results, we present design guidelines for creating effective timeline visualizations based on user task and data types. A free copy of this paper, the evaluation stimuli and data, and code are available https://osf.io/qr5yu/ 
    more » « less
  3. Composite temporal event sequence visualizations have included sentinel event alignment techniques to cope with data volume and variety. Prior work has demonstrated the utility of using single-event alignment for understanding the precursor, co-occurring, and aftereffect events surrounding a sentinel event. However, the usefulness of single-event alignment has not been sufficiently evaluated in composite visualizations. Furthermore, recently proposed dual-event alignment techniques have not been empirically evaluated. In this work, we designed tasks around temporal event sequence and timing analysis and conducted a controlled experiment on Amazon Mechanical Turk to examine four sentinel event alignment approaches: no sentinel event alignment (NoAlign), single-event alignment (SingleAlign), dual-event alignment with left justification (DualLeft), and dual-event alignment with stretch justification (DualStretch). Differences between approaches were most pronounced with more rows of data. For understanding intermediate events between two sentinel events, dual-event alignment was the clear winner for correctness-71% vs. 18% for NoAlign and SingleAlign. For understanding the duration between two sentinel events, NoAlign was the clear winner: correctness-88% vs. 36% for DualStretch- completion time-55 seconds vs. 101 seconds for DualLeft-and error-1.5% vs. 8.4% for DualStretch. For understanding precursor and aftereffect events, there was no significant difference among approaches. A free copy of this paper, the evaluation stimuli and data, and source code are available at osf.io/78fs5 
    more » « less