skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1756054

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ocean ecosystem models predict that warming and increased surface ocean stratification will trigger a series of ecosystem events, reducing the biological export of particulate carbon to the ocean interior. We present a nearly three-decade time series from the open ocean that documents a biological response to ocean warming and nutrient reductions wherein particulate carbon export is maintained, counter to expectations. Carbon export is maintained through a combination of phytoplankton community change to favor cyanobacteria with high cellular carbon-to-phosphorus ratios and enhanced shallow phosphorus recycling leading to increased nutrient use efficiency. These results suggest that surface ocean ecosystems may be more responsive and adapt more rapidly to changes in the hydrographic system than is currently envisioned in earth ecosystem models, with positive consequences for ocean carbon uptake. 
    more » « less
  2. Abstract The strength of the biological soft tissue pump in the ocean critically depends on how much organic carbon is produced via photosynthesis and how efficiently the carbon is transferred to the ocean interior. For a given amount of limiting nutrient, phosphate, soft tissue pump would be strengthened if the carbon (C) to phosphorus (P) ratio of sinking organic matter increases as the remineralization length scale of C increases. Here, we present a new data compilation of particle flux stoichiometry and show that C:P of sinking particulate organic matter (POM) in the ocean twilight zone on average is likely to be higher than the C:P ratio of surface suspended POM. We further demonstrate using a physics‐biology coupled global ocean model combined with a theory from first principles that an increase in C:P export flux ratio in the ocean's twilight zone can lead to a considerable drawdown of atmosphericpCO2
    more » « less
  3. Abstract In this study, we combined “reciprocal transplant experiments,” cell‐sorting, and metagenomics to understand how phytoplankton adapt to differences in phosphate availability and the implications for nutrient uptake rates. Reciprocal transplant experiments were conducted on six stations ranging from cold, nutrient‐rich water in the Labrador Sea to warm, extremely P‐deplete water in the Sargasso Sea. In most cases, the direct impact of environmental conditions and likely P availability was the strongest control on phosphate uptake. However, especially the transplant experiments between the northern and southern stations revealed that there are situations where changes in community composition and functional genes have an important effect on uptake rates. Phytoplankton lineages responded uniquely to changing environmental conditions. The picoeukaryotic phytoplankton P uptake response was strongly regulated by the phosphate concentration, whereas the effect of community composition was larger forProchlorococcusandSynechococcus. In support, we found a tight negative relationship between ambient phosphate concentration and the frequency of P acquisition genes in bothProchlorococcusandSynechococcus, and such differences in genome content could be linked to lineage‐specific shifts in uptake rates. Linking genes with ocean biogeochemistry is a major scientific and technical challenge and most studies rely on correlations between genotypes and environmental conditions. However, our study demonstrates how reciprocal transplant experiments are a possible tool for understanding the relative role of environmental condition vs. plankton diversity in regulating important open ocean ecosystem processes. 
    more » « less
  4. Key Points Simulated Prochlorococcus , Synechococcus , and pico‐eukaryotes contribute ∼60% of marine net primary productivity (NPP) Pico‐phytoplankton cycling contributes half of the marine export production, approaching parity with their contribution to NPP Pico‐eukaryotes and diatoms with elevated C:P stoichiometry enhance carbon export at poleward flanks of western boundary currents 
    more » « less
  5. Linking ‘omics measurements with biogeochemical cycles is a widespread challenge in microbial community ecology. Here, we propose applying genomic adaptation as ‘biosensors’ for microbial investments to overcome nutrient stress. We then integrate this genomic information with a trait-based model to predict regional shifts in the elemental composition of marine plankton communities. We evaluated this approach using metagenomic and particulate organic matter samples from the Atlantic, Indian and Pacific Oceans. We find that our genome-based trait model significantly improves our prediction of particulate C : P (carbon : phosphorus) across ocean regions. Furthermore, we detect previously unrecognized ocean areas of iron, nitrogen and phosphorus stress. In many ecosystems, it can be very challenging to quantify microbial stress. Thus, a carefully calibrated genomic approach could become a widespread tool for understanding microbial responses to environmental changes and the biogeochemical outcomes. This article is part of the theme issue ‘Conceptual challenges in microbial community ecology’. 
    more » « less
  6. null (Ed.)
  7. Surface ocean phosphate is commonly below the standard analytical detection limits, leading to an incomplete picture of the global variation and biogeochemical role of phosphate. A global compilation of phosphate measured using high-sensitivity methods revealed several previously unrecognized low-phosphate areas and clear regional differences. Both observational climatologies and Earth system models (ESMs) systematically overestimated surface phosphate. Furthermore, ESMs misrepresented the relationships between phosphate, phytoplankton biomass, and primary productivity. Atmospheric iron input and nitrogen fixation are known important controls on surface phosphate, but model simulations showed that differences in the iron-to-macronutrient ratio in the vertical nutrient supply and surface lateral transport are additional drivers of phosphate concentrations. Our study demonstrates the importance of accurately quantifying nutrients for understanding the regulation of ocean ecosystems and biogeochemistry now and under future climate conditions. 
    more » « less