Picoplankton populations dominate the planktonic community in the surface oligotrophic ocean. Yet, their strategies in the acquisition and the partitioning of organic and inorganic sources of nitrogen (N) and carbon (C) are poorly described. Here, we measured at the single‐cell level the uptake of dissolved inorganic C (C‐fixation), C‐leucine, N‐leucine, nitrate (NO3−), ammonium (NH4+), and N‐urea in pigmented and nonpigmented picoplankton groups at six low‐N stations in the northwestern Atlantic Ocean. Our study highlights important differences in trophic strategies between
- Award ID(s):
- 1756054
- NSF-PAR ID:
- 10440247
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 37
- Issue:
- 8
- ISSN:
- 0886-6236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Prochlorococcus ,Synechococcus , photosynthetic pico‐eukaryotes, and nonpigmented prokaryotes. Nonpigmented prokaryotes were characterized by high leucine uptake rates, nonsignificant C‐fixation and relatively low NH4+, N‐urea, and NO3−uptake rates. Nonpigmented prokaryotes contributed to 7% ± 3%, 2% ± 2%, and 9% ± 5% of the NH4+, NO3−, and N‐urea community uptake, respectively. In contrast, pigmented groups displayed relatively high C‐fixation rates, NH4+and N‐urea uptake rates, but lower leucine uptake rates than nonpigmented prokaryotes.Synechococcus and photosynthetic pico‐eukaryotes NO3−uptake rates were higher thanProchlorococcus ones. Pico‐sized pigmented groups accounted for a significant fraction of the community C‐fixation (63% ± 27%), NH4+uptake (47% ± 27%), NO3−uptake (62% ± 49%), and N‐urea uptake (81% ± 35%). Interestingly,Prochlorococcus and photosynthetic pico‐eukaryotes showed a greater reliance on C‐ and N‐leucine thanSynechococcus on average, suggesting a greater reliance on organic C and N sources. Taken together, our single‐cell results decipher the wide diversity of C and N trophic strategies between and within marine picoplankton groups, but a clear partitioning between pigmented and nonpigmented groups still remains. -
Abstract Experimentation at sea provides insight into which traits of ocean microbes are linked to performance in situ. Here we show distinct patterns in thermal tolerance of microbial phototrophs from adjacent water masses sampled in the south-west Pacific Ocean, determined using a fluorescent marker for reactive oxygen species (ROS). ROS content of pico-eukaryotes was assessed after 1, 5 and 25 h of incubation along a temperature gradient (15.6–32.1 °C). Pico-eukaryotes from the East Australian Current (EAC) had relatively constant ROS and showed greatest mortality after 25 h at 7 °C below ambient, whereas those from the Tasman Sea had elevated ROS in both warm and cool temperature extremes and greatest mortality at temperatures 6–10 °C above ambient, interpreted as the outcome of thermal stress. Tracking of water masses within an oceanographic circulation model showed populations had distinct thermal histories, with EAC pico-eukaryotes experiencing higher average temperatures for at least 1 week prior to sampling. While acclimatization and community assembly could both influence biological responses, this study clearly demonstrates that phenotypic divergence occurs along planktonic drift trajectories.
-
Abstract The Marine Biogeochemistry Library (MARBL) is a prognostic ocean biogeochemistry model that simulates marine ecosystem dynamics and the coupled cycles of carbon, nitrogen, phosphorus, iron, silicon, and oxygen. MARBL is a component of the Community Earth System Model (CESM); it supports flexible ecosystem configuration of multiple phytoplankton and zooplankton functional types; it is also portable, designed to interface with multiple ocean circulation models. Here, we present scientific documentation of MARBL, describe its configuration in CESM2 experiments included in the Coupled Model Intercomparison Project version 6 (CMIP6), and evaluate its performance against a number of observational data sets. The model simulates present‐day air‐sea CO2flux and many aspects of the carbon cycle in good agreement with observations. However, the simulated integrated uptake of anthropogenic CO2is weak, which we link to poor thermocline ventilation, a feature evident in simulated chlorofluorocarbon distributions. This also contributes to larger‐than‐observed oxygen minimum zones. Moreover, radiocarbon distributions show that the simulated circulation in the deep North Pacific is extremely sluggish, yielding extensive oxygen depletion and nutrient trapping at depth. Surface macronutrient biases are generally positive at low latitudes and negative at high latitudes. CESM2 simulates globally integrated net primary production (NPP) of 48 Pg C yr−1and particulate export flux at 100 m of 7.1 Pg C yr−1. The impacts of climate change include an increase in globally integrated NPP, but substantial declines in the North Atlantic. Particulate export is projected to decline globally, attributable to decreasing export efficiency associated with changes in phytoplankton community composition.
-
Interannual variations in marine net primary production (NPP) contribute to the variability of available living marine resources, as well as influence critical carbon cycle processes. Here we provide a global overview of near‐term (1 to 10 years) potential predictability of marine NPP using a novel set of initialized retrospective decadal forecasts from an Earth System Model. Interannual variations in marine NPP are potentially predictable in many areas of the ocean 1 to 3 years in advance, from temperate waters to the tropics, showing a substantial improvement over a simple persistence forecast. However, some regions, such as the subpolar Southern Ocean, show low potential predictability. We analyze how bottom‐up drivers of marine NPP (nutrients, light, and temperature) contribute to its predictability. Regions where NPP is primarily driven by the physical supply of nutrients (e.g., subtropics) retain higher potential predictability than high‐latitude regions where NPP is controlled by light and/or temperature (e.g., the Southern Ocean). We further examine NPP predictability in the world's Large Marine Ecosystems. With a few exceptions, we show that initialized forecasts improve potential predictability of NPP in Large Marine Ecosystems over a persistence forecast and may aid to manage living marine resources.
-
null (Ed.)The oceans teem with heterotrophic bacterioplankton that play an appreciable role in the uptake of dissolved organic carbon (DOC) derived from phytoplankton net primary production (NPP). As such, bacterioplankton carbon demand (BCD), or gross heterotrophic production, represents a major carbon pathway that influences the seasonal accumulation of DOC in the surface ocean and, subsequently, the potential vertical or horizontal export of seasonally accumulated DOC. Here, we examine the contributions of bacterioplankton and DOM to ecological and biogeochemical carbon flow pathways, including those of the microbial loop and the biological carbon pump, in the Western North Atlantic Ocean (∼39–54°N along ∼40°W) over a composite annual phytoplankton bloom cycle. Combining field observations with data collected from corresponding DOC remineralization experiments, we estimate the efficiency at which bacterioplankton utilize DOC, demonstrate seasonality in the fraction of NPP that supports BCD, and provide evidence for shifts in the bioavailability and persistence of the seasonally accumulated DOC. Our results indicate that while the portion of DOC flux through bacterioplankton relative to NPP increased as seasons transitioned from high to low productivity, there was a fraction of the DOM production that accumulated and persisted. This persistent DOM is potentially an important pool of organic carbon available for export to the deep ocean via convective mixing, thus representing an important export term of the biological carbon pump.more » « less