Throughout the Holocene, societies developed additional layers of administration and more information-rich instruments for managing and recording transactions and events as they grew in population and territory. Yet, while such increases seem inevitable, they are not. Here we use the Seshat database to investigate the development of hundreds of polities, from multiple continents, over thousands of years. We find that sociopolitical development is dominated first by growth in polity scale, then by improvements in information processing and economic systems, and then by further increases in scale. We thus define a Scale Threshold for societies, beyond which growth in information processing becomes paramount, and an Information Threshold, which once crossed facilitates additional growth in scale. Polities diverge in socio-political features below the Information Threshold, but reconverge beyond it. We suggest an explanation for the evolutionary divergence between Old and New World polities based on phased growth in scale and information processing. We also suggest a mechanism to help explain social collapses with no evident external causes.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Fu, Feng (Ed.)Network science has increasingly become central to the field of epidemiology and our ability to respond to infectious disease threats. However, many networks derived from modern datasets are not just large, but dense, with a high ratio of edges to nodes. This includes human mobility networks where most locations have a large number of links to many other locations. Simulating large-scale epidemics requires substantial computational resources and in many cases is practically infeasible. One way to reduce the computational cost of simulating epidemics on these networks is sparsification , where a representative subset of edges is selected based on some measure of their importance. We test several sparsification strategies, ranging from naive thresholding to random sampling of edges, on mobility data from the U.S. Following recent work in computer science, we find that the most accurate approach uses the effective resistances of edges, which prioritizes edges that are the only efficient way to travel between their endpoints. The resulting sparse network preserves many aspects of the behavior of an SIR model, including both global quantities, like the epidemic size, and local details of stochastic events, including the probability each node becomes infected and its distribution of arrival times. This holds even when the sparse network preserves fewer than 10% of the edges of the original network. In addition to its practical utility, this method helps illuminate which links of a weighted, undirected network are most important to disease spread.more » « less
-
Amaral, Luís A. (Ed.)To build better theories of cities, companies, and other social institutions such as universities, requires that we understand the tradeoffs and complementarities that exist between their core functions, and that we understand bounds to their growth. Scaling theory has been a powerful tool for addressing such questions in diverse physical, biological and urban systems, revealing systematic quantitative regularities between size and function. Here we apply scaling theory to the social sciences, taking a synoptic view of an entire class of institutions. The United States higher education system serves as an ideal case study, since it includes over 5,800 institutions with shared broad objectives, but ranges in strategy from vocational training to the production of novel research, contains public, nonprofit and for-profit models, and spans sizes from 10 to roughly 100,000 enrolled students. We show that, like organisms, ecosystems and cities, universities and colleges scale in a surprisingly systematic fashion following simple power-law behavior. Comparing seven commonly accepted sectors of higher education organizations, we find distinct regimes of scaling between a school’s total enrollment and its expenditures, revenues, graduation rates and economic added value. Our results quantify how each sector leverages specific economies of scale to address distinct priorities. Taken together, the scaling of features within a sector along with the shifts in scaling across sectors implies that there are generic mechanisms and constraints shared by all sectors, which lead to tradeoffs between their different societal functions and roles. We highlight the strong complementarity between public and private research universities, and community and state colleges, that all display superlinear returns to scale. In contrast to the scaling of biological systems, our results highlight that much of the observed scaling behavior is modulated by the particular strategies of organizations rather than an immutable set of constraints.more » « less
-
Urban scaling analysis, the study of how aggregated urban features vary with the population of an urban area, provides a promising framework for discovering commonalities across cities and uncovering dynamics shared by cities across time and space. Here, we use the urban scaling framework to study an important, but under-explored feature in this community—income inequality. We propose a new method to study the scaling of income distributions by analysing total income scaling in population percentiles. We show that income in the least wealthy decile (10%) scales close to linearly with city population, while income in the most wealthy decile scale with a significantly superlinear exponent. In contrast to the superlinear scaling of total income with city population, this decile scaling illustrates that the benefits of larger cities are increasingly unequally distributed. For the poorest income deciles, cities have no positive effect over the null expectation of a linear increase. We repeat our analysis after adjusting income by housing cost, and find similar results. We then further analyse the shapes of income distributions. First, we find that mean, variance, skewness and kurtosis of income distributions all increase with city size. Second, the Kullback–Leibler divergence between a city’s income distribution and that of the largest city decreases with city population, suggesting the overall shape of income distribution shifts with city population. As most urban scaling theories consider densifying interactions within cities as the fundamental process leading to the superlinear increase of many features, our results suggest this effect is only seen in the upper deciles of the cities. Our finding encourages future work to consider heterogeneous models of interactions to form a more coherent understanding of urban scaling.more » « less
-
Abstract We present and analyze a minimalist model for the vertical transport of people in a tall building by elevators. We focus on start-of-day operation in which people arrive at the ground floor of the building at a fixed rate. When an elevator arrives on the ground floor, passengers enter until the elevator capacity is reached, and then they are transported to their destination floors. We determine the distribution of times that each person waits until an elevator arrives, the number of people waiting for elevators, and transition to synchrony for multiple elevators when the arrival rate of people is sufficiently large. We validate many of our predictions by event-driven simulations.more » « less