skip to main content

Search for: All records

Award ID contains: 1762827

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Optimal fish array hydrodynamics in accelerating phalanx schools are investigated through a computational framework which combines high fidelity Computational Fluid Dynamics (CFD) simulations with a gradient free surrogate-based optimization algorithm. Critical parameters relevant to a phalanx fish school, such as midline kinematics, separation distance and phase synchronization, are investigated in light of efficient propulsion during an accelerating fish motion. Results show that the optimal midline kinematics in accelerating phalanx schools resemble those of accelerating solitary swimmers. The optimal separation distance in a phalanx school for thunniform biologically-inspired swimmers is shown to be around 2L(whereLis the swimmer’s total length). Furthermore, separation distance is shown to have a stronger effect,ceteris paribus, on the propulsion efficiency of a school when compared to phase synchronization.

    more » « less
  2. Surrogate based optimization (SBO) methods have gained popularity in the field of constrained optimization of expensive black-box functions. However, constraint handling methods do not usually guarantee strictly feasible candidates during optimization. This can become an issue in applied engineering problems where design variables must remain feasible for simulations to not fail. We propose a simple constraint-handling method for computationally inexpensive constraint functions which guarantees strictly feasible candidates when using a surrogate-based optimizer. We compare our method to other SBO algorithms and an EA on five analytical test functions, and an applied fully-resolved Computational Fluid Dynamics (CFD) problem concerned with optimization of an undulatory swimming of a fish-like body, and show that the proposed algorithm shows favorable results while guaranteeing feasible candidates. 
    more » « less
  3. A high-order in space spectral-element methodology for the solution of a strongly coupled fluid-structure interaction (FSI) problem is developed. A methodology is based on a partitioned solution of incompressible fluid equations on body-fitted grids, and nonlinearly-elastic solid deformation equations coupled via a fixed-point iteration approach with Aitken relaxation. A comprehensive verification strategy of the developed methodology is presented, including h-, p-and temporal refinement studies. An expected order of convergence is demonstrated first separately for the corresponding fluid and solid solvers, followed by a self-convergence study on a coupled FSI problem (self-convergence refers to a convergence to a reference solution obtained with the same solver at higher resolution). To this end, a new three-dimensional fluid-structure interaction benchmark is proposed for a verification of the FSI codes, which consists of a fluid flow in a channel with one rigid and one flexible wall. It is shown that, due to a consistent problem formulation, including initial and boundary conditions, a high-order spatial convergence on a fully coupled FSI problem can be demonstrated. Finally, a developed framework is applied successfully to a Direct Numerical Simulation of a turbulent flow in a channel interacting with a compliant wall, where the fluid-structure interface is fully resolved. 
    more » « less