skip to main content


Search for: All records

Award ID contains: 1763108

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over the last two decades, robust optimization has emerged as a popular means to address decision-making problems affected by uncertainty. This includes single-stage and multi-stage problems involving real-valued and/or binary decisions and affected by exogenous (decision-independent) and/or endogenous (decision-dependent) uncertain parameters. Robust optimization techniques rely on duality theory potentially augmented with approximations to transform a (semi-)infinite optimization problem to a finite program, the robust counterpart. Whereas writing down the model for a robust optimization problem is usually a simple task, obtaining the robust counterpart requires expertise. To date, very few solutions are available that can facilitate the modeling and solution of such problems. This has been a major impediment to their being put to practical use. In this paper, we propose ROC++, an open-source C++ based platform for automatic robust optimization, applicable to a wide array of single-stage and multi-stage robust problems with both exogenous and endogenous uncertain parameters, that is easy to both use and extend. It also applies to certain classes of stochastic programs involving continuously distributed uncertain parameters and endogenous uncertainty. Our platform naturally extends existing off-the-shelf deterministic optimization platforms and offers ROPy, a Python interface in the form of a callable library, and the ROB file format for storing and sharing robust problems. We showcase the modeling power of ROC++ on several decision-making problems of practical interest. Our platform can help streamline the modeling and solution of stochastic and robust optimization problems for both researchers and practitioners. It comes with detailed documentation to facilitate its use and expansion. The latest version of ROC++ can be downloaded from https://sites.google.com/usc.edu/robust-opt-cpp/ . Summary of Contribution: The paper “ROC++: Robust Optimization in C++” proposes a new open-source C++ based platform for modeling, automatically reformulating, and solving robust optimization problems. ROC++ can address both single-stage and multi-stage problems involving exogenous and/or endogenous uncertain parameters and real- and/or binary-valued adaptive variables. The ROC++ modeling language is similar to the one provided for the deterministic case by state-of-the-art deterministic optimization solvers. ROC++ comes with detailed documentation to facilitate its use and expansion. It also offers ROPy, a Python interface in the form of a callable library. The latest version of ROC++ can be downloaded from https://sites.google.com/usc.edu/robust-opt-cpp/ . History: Accepted by Ted Ralphs, Area Editor for Software Tools. Funding: This material is based upon work supported by the National Science Foundation under Grant No. 1763108. This support is gratefully acknowledged. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplementary Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.1209 ) or is available from the IJOC GitHub software repository ( https://github.com/INFORMSJoC ) at ( https://dx.doi.org/10.5281/zenodo.6360996 ). 
    more » « less
  2. Human development is a threat to biodiversity and conservation organizations (COs) are purchasing land to protect areas for biodiversity preservation. COs have limited budgets and cannot purchase all the land necessary to perfectly preserve biodiversity, and human activities are uncertain, so exact developments are unpredictable. We propose a multistage, robust optimization problem with a data-driven hierarchical-structured uncertainty set which captures the endogenous nature of the binary (0-1) human land use uncertain parameters to help COs choose land parcels to purchase to minimize the worst-case human impact on biodiversity. In the proposed approach, the problem is formulated as a game between COs, which choose parcels to protect with limited budgets, and the human development, which will maximize the loss to the unprotected parcels. We leverage the cellular automata model to simulate the development based on climate data, land characteristics, and human land use data. We use the simulation to build data-driven uncertainty sets. We demonstrate that an equivalent formulation of the problem can be obtained that presents exogenous uncertainty only and where uncertain parameters only appear in the objective. We leverage this reformulation to propose a conservative $K$-adaptability reformulation of our problem that can be solved routinely by off-the-shelf solvers like Gurobi or CPLEX. The numerical results based on real data show that the proposed method reduces conservation loss by 19.46% on average compared to standard approaches used in practice for biodiversity conservation. 
    more » « less
  3. null (Ed.)
    AI for good (AI4G) projects involve developing and applying ar- tificial intelligence (AI) based solutions to further goals in areas such as sustainability, health, humanitarian aid, and social justice. Developing and deploying such solutions must be done in collab- oration with partners who are experts in the domain in question and who already have experience in making progress towards such goals. Based on our experiences, we detail the different aspects of this type of collaboration broken down into four high-level cat- egories: communication, data, modeling, and impact, and distill eleven takeaways to guide such projects in the future. We briefly describe two case studies to illustrate how some of these takeaways were applied in practice during our past collaborations. 
    more » « less
  4. Models capturing parameterized random walks on graphs have been widely adopted in wildlife conservation to study species dispersal as a function of landscape features. Learning the probabilistic model empowers ecologists to understand animal responses to conservation strategies. By exploiting the connection between random walks and simple electric networks, we show that learning a random walk model can be reduced to finding the optimal graph Laplacian for a circuit. We propose a moment matching strategy that correlates the model’s hitting and commuting times with those observed empirically. To find the best Laplacian, we propose a neural network capable of back-propagating gradients through the matrix inverse in an end-to-end fashion. We developed a scalable method called CGInv which back-propagates the gradients through a neural network encoding each layer as a conjugate gradient iteration. To demonstrate its effectiveness, we apply our computational framework to applications in landscape connectivity modeling. Our experiments successfully demonstrate that our framework effectively and efficiently recovers the ground-truth configurations. 
    more » « less