skip to main content

Title: Becoming Good at AI for Good
AI for good (AI4G) projects involve developing and applying ar- tificial intelligence (AI) based solutions to further goals in areas such as sustainability, health, humanitarian aid, and social justice. Developing and deploying such solutions must be done in collab- oration with partners who are experts in the domain in question and who already have experience in making progress towards such goals. Based on our experiences, we detail the different aspects of this type of collaboration broken down into four high-level cat- egories: communication, data, modeling, and impact, and distill eleven takeaways to guide such projects in the future. We briefly describe two case studies to illustrate how some of these takeaways were applied in practice during our past collaborations.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (AIES ’21), May 19–21, 2021,
Sponsoring Org:
National Science Foundation
More Like this
  1. Today’s classrooms are remarkably different from those of yesteryear. In place of individual students responding to the teacher from neat rows of desks, one more typically finds students working in groups on projects, with a teacher circulating among groups. AI applications in learning have been slow to catch up, with most available technologies focusing on personalizing or adapting instruction to learners as isolated individuals. Meanwhile, an established science of Computer Supported Collaborative Learning has come to prominence, with clear implications for how collaborative learning could best be supported. In this contribution, I will consider how intelligence augmentation could evolve to support collaborative learning as well as three signature challenges of this work that could drive AI forward. In conceptualizing collaborative learning, Kirschner and Erkens (2013) provide a useful 3x3 framework in which there are three aspects of learning (cognitive, social and motivational), three levels (community, group/team, and individual) and three kinds of pedagogical supports (discourse-oriented, representation-oriented, and process-oriented). As they engage in this multiply complex space, teachers and learners are both learning to collaborate and collaborating to learn. Further, questions of equity arise as we consider who is able to participate and in which ways. Overall, this analysis helps usmore »see the complexity of today’s classrooms and within this complexity, the opportunities for augmentation or “assistance to become important and even essential. An overarching design concept has emerged in the past 5 years in response to this complexity, the idea of intelligent augmentation for “orchestrating” classrooms (Dillenbourg, et al, 2013). As a metaphor, orchestration can suggest the need for a coordinated performance among many agents who are each playing different roles or voicing different ideas. Practically speaking, orchestration suggests that “intelligence augmentation” could help many smaller things go well, and in doing so, could enable the overall intention of the learning experience to succeed. Those smaller things could include helping the teacher stay aware of students or groups who need attention, supporting formation of groups or transitions from one activity to the next, facilitating productive social interactions in groups, suggesting learning resources that would support teamwork, and more. A recent panel of AI experts identified orchestration as an overarching concept that is an important focus for near-term research and development for intelligence augmentation (Roschelle, Lester & Fusco, 2020). Tackling this challenging area of collaborative learning could also be beneficial for advancing AI technologies overall. Building AI agents that better understand the social context of human activities has broad importance, as does designing AI agents that can appropriately interact within teamwork. Collaborative learning has trajectory over time, and designing AI systems that support teams not just with a short term recommendation or suggestion but in long-term developmental processes is important. Further, classrooms that are engaged in collaborative learning could become very interesting hybrid environments, with multiple human and AI agents present at once and addressing dual outcome goals of learning to collaborate and collaborating to learn; addressing a hybrid environment like this could lead to developing AI systems that more robustly help many types of realistic human activity. In conclusion, the opportunity to make a societal impact by attending to collaborative learning, the availability of growing science of computer-supported collaborative learning and the need to push new boundaries in AI together suggest collaborative learning as a challenge worth tackling in coming years.« less
  2. Meeting the UN Sustainable Development Goals (SDGs) requires innovations in education to build key competencies in all learners. Learning objectives for SDGs identified by UNESCO like the “Integrated problem-solving competency,” if integrated properly with high school curriculum, can contribute sustainable development solutions for Belize. Additionally, the 3rd international conference of SIDS under the theme, “The sustainable development of small island developing states through genuine and durable partnerships,” stressed investment in education and training, including through partnerships with migrants and diaspora communities, with “concrete, focused, forward-looking and action oriented programmes.” The Sagicor Visionaries Challenge, a sustainability challenge launched by the Caribbean Examinations Council (CXC), the Caribbean Science Foundation, and the Ministries of Education across 12 Caribbean countries in 2012, represented an example of such a partnership that fostered many key competencies now needed for meeting the SDGs. It asked secondary school students in the Caribbean to identify a challenge facing their school and or community, propose a sustainable and innovative solution, and show how that solution uses Science Technology Engineering and Mathematics (STEM) as well as got the support of the school community. For its inaugural year, teacher and student sensitization workshops were organized in each country. Teachers supervised themore »student projects with support from mentors who were either local or virtual, including many members of the Caribbean diaspora. 175 projects entered the competition, representing 900 students ranging in age from 11 to 19. Experience from the inaugural year, which saw Belize’s Bishop Martin Secondary emerge the regional challenge winner, demonstrated interest by young people of the Caribbean in many of the themes listed in the SIDS outcomes like climate change, sustainable energy, disaster risk reduction, sustainable oceans and seas, food security and nutrition, water and sanitation, sustainable transportation, sustainable consumption and production, and health and non-communicable diseases. Reflection on student projects from Belize from the 2013 challenge, as well as current examples of teacher led inquiry-based projects for CXC’s School Based Assessments (SBAs), offer multiple opportunities for ensuring reef to ridge sustainable development in Belize and the rest of the Caribbean.« less
  3. The Public Key Infrastructure (PKI) is the foundation which enables secure and trusted transactions across the Internet. PKI is subject to both continuous attacks and regular improvements; for example, advances in cryptography have led to rejections of previously trusted algorithms (i.e., SHA1, MD5). Yet there have also been organizational failures and malicious acts by trusted parties. In this work, we focus on the sociotechnical components of the current X.509 PKI with the goals of better understanding its vulnerabilities, and ideally informing the implementation of future PKIs. We begin with a taxonomy of chronic, catastrophic, high impact, or frequent PKI failures. This categorization was informed by a survey of non-expert perceptions of PKI and an interdisciplinary workshop addressing the future of security in the Internet of Things. To evaluate the failure modes, we conducted qualitative interviews with policy scholars and experts in applied cryptography. We summarize the results of the survey and workshop, and detail the expert interviews. Our findings indicate that there are significant failure types which neither the technical nor policy community are deeply engaging. The underlying assumptions about rate and severity of failure differ between these communities. Yet there is a common awareness of the vulnerabilities of themore »end users: the people who are required to trust PKI to interact and engage with the Internet. We identify an urgency in mitigating such critical issues, because of the increasing adoption of cyberphysical systems and the Internet of Things (IoT). We concluded that there is a need for integrated organizational, policy, and technical coordination to address the chronic and potentially catastrophic risks. We introduce possible economic and regulatory solutions, and highlight the key takeaways which pave our future research directions.« less
  4. Involving the public in scientific discovery offers opportunities for engagement, learning, participation, and action. Since its launch in 2007, the platform has supported hundreds of community-driven citizen science projects involving thousands of participants who have generated close to a million scientific measurements around the world. Members using follow their curiosities and concerns to develop, lead, or simply participate in research projects. While professional scientists are trained to make ethical determinations related to the collection of, access to, and use of information, citizen scientists and practitioners may be less aware of such issues and more likely to become involved in ethical dilemmas. In this era of big and open data, where data sharing is encouraged and open science is promoted, privacy and openness considerations can often be overlooked. Platforms that support the collection, use, and sharing of data and personal information need to consider their responsibility to protect the rights to and ownership of data, the provision of protection options for data and members, and at the same time provide options for openness. This requires critically considering both intended and unintended consequences of the use of platforms, data, and volunteer information. Here, we use our journey developing tomore »argue that incorporating customization into platforms through flexible design options for project managers shifts the decision-making from top-down to bottom-up and allows project design to be more responsive to goals. To protect both people and data, we developed—and continue to improve—options that support various levels of “open” and “closed” access permissions for data and membership participation. These options support diverse governance styles that are responsive to data uses, traditional and indigenous knowledge sensitivities, intellectual property rights, personally identifiable information concerns, volunteer preferences, and sensitive data protections. We present a typology for citizen science openness choices, their ethical considerations, and strategies that we are actively putting into practice to expand privacy options and governance models based on the unique needs of individual projects using our platform.« less
  5. Growing complexity and magnitude of the challenges facing humanity require new ways of understanding and operationalizing solutions for more healthy, sustainable, secure, and joyful living. Developed almost contemporaneously but separately, the National Academy of Engineering's 14 Grand Challenges (GCs) and United Nation’s 17 Sustainable Development Goals (GCs) describe and call for solutions to these challenges. During the 2017 meetings for the UNESCO Kick-off for Engineering Report II in Beijing, the Global Grand Challenges Summit in Washington, DC, and the World Engineering Education Forum (WEEF) in Malaysia, we expanded our work to include international perspectives on ways that the GCs and SDGs could be more strongly connected. Within this context we ask, "How can educators integrate best practices to nurture and support development of globally competent students who will reach the goals as the Engineers of 2020?" and "How can connectivity and alignment of curricula to the GCs and SDGs foster students’ development?" Conclusions from the UNESCO’s meeting were that educators and stakeholders still have much to do with respect to sharing the 17 SDGs with engineering audiences around the world. This conclusion was reiterated at WEEF when an informal poll among participants from around the world revealed that knowledge ofmore »both the GCs and the SDGs was not as wide-spread as we had initially assumed. There were several engineering educators who were learning about both of these constructs for the very first time. This led to concerns posed by students participating in the Malaysia conference as part of the Student Platform for Engineering Education Development (World SPEED). The student teams from India, Colombia, Brazil, and Korea acknowledged potential disadvantages associated with learning in the environments created by educators unequipped with knowledge of topics covered by the GCs, and the SDGs. The students were further concerned that their faculty and mentors would not be able to create educational environments that allow for development of intentional learning and conscientious projects associated the GCs and SDGs. The report here will discuss ways that the GCs and SDGs are driving international conversations about engineering curricula, diversity and inclusion, and partnerships for the goals.« less