Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 10, 2023
-
Free, publicly-accessible full text available June 10, 2023
-
Formally verified correctness is one of the most desirable properties of software systems. But despite great progress made via interactive theorem provers, such as Coq, writing proof scripts for verification remains one of the most effort-intensive (and often prohibitively difficult) software development activities. Recent work has created tools that automatically synthesize proofs or proof scripts. For example, CoqHammer can prove 26.6% of theorems completely automatically by reasoning using precomputed facts, while TacTok and ASTactic, which use machine learning to model proof scripts and then perform biased search through the proof-script space, can prove 12.9% and 12.3% of the theorems, respectively.more »Free, publicly-accessible full text available May 21, 2023
-
Advances in how we build and use software, specifically the integration of machine learning for decision making, have led to widespread concern around model and software fairness. We present fairkit-learn, an interactive Python toolkit designed to support data scientists' ability to reason about and understand model fairness. We outline how fairkit-learn can support model training, evaluation, and comparison and describe the potential benefit that comes with using fairkit-learn in comparison to the state-of-the-art. Fairkit-learn is open source at https://go.gmu.edu/fairkit-learn/.Free, publicly-accessible full text available May 21, 2023
-
Recent studies found that using machine learning for social applications can lead to injustice in the form of racist, sexist, and otherwise unfair and discriminatory outcomes. To address this challenge, recent machine learning algorithms have been designed to limit the likelihood such unfair behavior occurs. However, these approaches typically assume the data used for training is representative of what will be encountered in deployment, which is often untrue. In particular, if certain subgroups of the population become more or less probable in deployment (a phenomenon we call demographic shift), prior work's fairness assurances are often invalid. In this paper, wemore »Free, publicly-accessible full text available April 25, 2023
-
Free, publicly-accessible full text available March 29, 2023
-
Diversity is an important principle in data selection and summarization, facility location, and recommendation systems. Our work focuses on maximizing diversity in data selection, while offering fairness guarantees. In particular, we offer the first study that augments the Max-Min diversification objective with fairness constraints. More specifically, given a universe 𝒰 of n elements that can be partitioned into m disjoint groups, we aim to retrieve a k-sized subset that maximizes the pairwise minimum distance within the set (diversity) and contains a pre-specified k_i number of elements from each group i (fairness). We show that this problem is NP-complete even inmore »