Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Fabrication process variations can significantly influence the performance and yield of nano-scale electronic and photonic circuits. Stochastic spectral methods have achieved great success in quantifying the impact of process variations, but they suffer from the curse of dimensionality. Recently, low-rank tensor methods have been developed to mitigate this issue, but two fundamental challenges remain open: how to automatically determine the tensor rank and how to adaptively pick the informative simulation samples. This paper proposes a novel tensor regression method to address these two challenges. We use a ℓq/ℓ2 group-sparsity regularization to determine the tensor rank. The resulting optimization problem can be efficiently solved via an alternating minimization solver. We also propose a two-stage adaptive sampling method to reduce the simulation cost. Our method considers both exploration and exploitation via the estimated Voronoi cell volume and nonlinearity measurement respectively. The proposed model is verified with synthetic and some realistic circuit benchmarks, on which our method can well capture the uncertainty caused by 19 to 100 random variables with only 100 to 600 simulation samples.more » « less
-
null (Ed.)Uncertainty quantification based on stochastic spectral methods suffers from the curse of dimensionality. This issue was mitigated recently by low-rank tensor methods. However, there exist two fundamental challenges in low-rank tensor-based uncertainty quantification: how to automatically determine the tensor rank and how to pick the simulation samples. This paper proposes a novel tensor regression method to address these two challenges. Our method uses an 12,p-norm regularization to determine the tensor rank and an estimated Voronoi diagram to pick informative samples for simulation. The proposed framework is verified by a 19-dim phonics bandpass filter and a 57-dim CMOS ring oscillator, capturing the high-dimensional uncertainty well with only 90 and 290 samples respectively.more » « less
An official website of the United States government
