Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Gavin Armstrong (Ed.)Quantum interference (QI)—the constructive or destructive interference of conduction pathways through molecular orbitals—plays a fundamental role in enhancing or suppressing charge and spin transport in organic molecular electronics. Graphical models were developed to predict constructive versus destructive interference in polyaromatic hydrocarbons and have successfully estimated the large conductivity differences observed in single-molecule transport measurements. A major challenge lies in extending these models to excitonic (photoexcited) processes, which typically involve distinct orbitals with different symmetries. Here we investigate how QI models can be applied as bridging moieties in intramolecular singlet-fission compounds to predict relative rates of triplet pair formation. In a series of bridged intramolecular singlet-fission dimers, we found that destructive QI always leads to a slower triplet pair formation across different bridge lengths and geometries. A combined experimental and theoretical approach reveals the critical considerations of bridge topology and frontier molecular orbital energies in applying QI conductance principles to predict rates of multiexciton generation.more » « lessFree, publicly-accessible full text available December 30, 2024
-
Stephen E. Nagler (Ed.)One of the strongest justifications for the continued search for superconductivity within the single-band Hubbard Hamiltonian originates from the apparent success of single-band ladder-based theories in predicting the occurrence of superconductivity in the cuprate coupled-ladder compound Sr{14−x}Ca{x}Cu{24}O{41}. Recent theoretical works have, however, shown the complete absence of quasi-long-range superconducting correlations within the hole-doped multiband ladder Hamiltonian including realistic Coulomb repulsion between holes on oxygen sites and oxygen-oxygen hole hopping. Experimentally, superconductivity in Sr{14−x}Ca{x}Cu{24}O{41} occurs only under pressure and is preceded by dramatic transition from one to two dimensions that remains not understood. We show that understanding the dimensional crossover requires adopting a valence transition model within which there occurs transition in Cu-ion ionicity from +2 to +1 , with transfer of holes from Cu to O ions [S. Mazumdar, Phys. Rev. B 98, 205153 (2018)]. The driving force behind the valence transition is the closed-shell electron configuration of Cu^{1+} , a feature shared by cations of all oxides with a negative charge-transfer gap. We make a falsifiable experimental prediction for Sr{14−x}Ca{x}Cu{24}O{41} and discuss the implications of our results for layered two-dimensional cuprates.more » « less
-
Stephen E. Nagler (Ed.)The relevance of the single-band two-dimensional Hubbard model to superconductivity in the doped cuprates has recently been questioned, based on density matrix renormalization group (DMRG) computations that found superconductivity over an unrealistically broad doping region upon electron-doping, yet a complete absence of superconductivity for hole-doping. We report very similar results from DMRG calculations on a Cu2O3 twoleg ladder within the parent three-band correlated-electron Hamiltonian. The strong asymmetry found in our calculations are in contradiction to the deep and profound symmetry in the experimental phase diagrams of electron- and hole-doped cuprate superconductors, as seen from the occurrence of quantum critical points within the superconducting domes in both cases that are characterized by Fermi surface reconstruction, large jumps in carrier density, and strange metal behavior.more » « less
-
null (Ed.)In the most studied family of organic superconductors κ-(BEDT-TTF)2X, the BEDT-TTF molecules that make up the conducting planes are coupled as dimers. For some anions X, an antiferromagnetic insulator is found at low temperatures adjacent to superconductivity. With an average of one hole carrier per dimer, the BEDT-TTF band is effectively 12-filled. Numerous theories have suggested that fluctuations of the magnetic order can drive superconducting pairing in these models, even as direct calculations of superconducting pairing in monomer 12-filled band models find no superconductivity. Here, we present accurate zero-temperature Density Matrix Renormalization Group (DMRG) calculations of a dimerized lattice with one hole per dimer. While we do find an antiferromagnetic state in our results, we find no evidence for superconducting pairing. This further demonstrates that magnetic fluctuations in the effective 12-filled band approach do not drive superconductivity in these and related materials.more » « less
-
We report studies of the correlated excited states of coronene and substituted coronene within the Pariser–Parr–Pople (PPP) correlated π-electron model employing the symmetry-adapteddensity matrix renormalization group technique. These polynuclear aromatic hydrocarbons can be considered as graphene nanoflakes. We review their electronic structures utilizing a new symmetry adaptation scheme that exploits electron-hole symmetry, spin-inversion symmetry, and end-to-endinterchange symmetry. The study of the electronic structures sheds light on the electron correlation effects in these finite-size graphene analogues, which diminishes going from one-dimensional tohigher-dimensional systems, yet is significant within these finite graphene derivatives.more » « less
-
The nature and extent of the spin-entanglement in the triplet-triplet biexciton with total spin zero in correlated-electron π-conjugated systems continues to be an enigma. Differences in the ultrafast transient absorption spectra of free triplets versus the triplet-triplet can give a measure of the entanglement. This, however, requires theoretical understandings of transient absorptions from the optical spin-singlet, the lowest spin-triplet exciton, as well as from the triplet-triplet state, whose spectra are often overlapping and hence difficult to distinguish. We present a many-electron theory of the electronic structure of the triplet-triplet, and of complete wavelength-dependent excited state absorptions (ESAs) from all three states in a heteroacene dimer of interest in the field of intramolecular singlet fission. The theory allows direct comparisons of ESAs with existing experiments as well as experimental predictions, and gives physical understandings of transient absorptions within a pictorial exciton basis that can be carried over to other experimental systems.more » « less