Twisted bilayer graphene with a twist angle of around 1.1° features a pair of isolated flat electronic bands and forms a platform for investigating strongly correlated electrons. Here, we use scanning tunnelling microscopy to probe the local properties of highly tunable twisted bilayer graphene devices and show that the flat bands deform when aligned with the Fermi level. When the bands are half-filled, we observe the development of gaps originating from correlated insulating states. Near charge neutrality, we find a previously unidentified correlated regime featuring an enhanced splitting of the flat bands. We describe this within a microscopic model that predicts a strong tendency towards nematic ordering. Our results provide insights into symmetry-breaking correlation effects and highlight the importance of electronic interactions for all filling fractions in twisted bilayer graphene.
more »
« less
Correlated Electronic Properties of a Graphene Nanoflake: Coronene
We report studies of the correlated excited states of coronene and substituted coronene within the Pariser–Parr–Pople (PPP) correlated π-electron model employing the symmetry-adapteddensity matrix renormalization group technique. These polynuclear aromatic hydrocarbons can be considered as graphene nanoflakes. We review their electronic structures utilizing a new symmetry adaptation scheme that exploits electron-hole symmetry, spin-inversion symmetry, and end-to-endinterchange symmetry. The study of the electronic structures sheds light on the electron correlation effects in these finite-size graphene analogues, which diminishes going from one-dimensional tohigher-dimensional systems, yet is significant within these finite graphene derivatives.
more »
« less
- Award ID(s):
- 1764152
- PAR ID:
- 10098409
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 24
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 730
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Two-dimensional (2D) Dirac-like electron gases have attracted tremendous research interest ever since the discovery of free-standing graphene. The linear energy dispersion and nontrivial Berry phase play a pivotal role in the electronic, optical, mechanical, and chemical properties of 2D Dirac materials. The known 2D Dirac materials are gapless only within certain approximations, for example, in the absence of spin–orbit coupling (SOC). Here, we report a route to establishing robust Dirac cones in 2D materials with nonsymmorphic crystal lattice. The nonsymmorphic symmetry enforces Dirac-like band dispersions around certain high-symmetry momenta in the presence of SOC. Through μ-ARPES measurements, we observe Dirac-like band dispersions in α-bismuthene. The nonsymmorphic lattice symmetry is confirmed by μ-low-energy electron diffraction and scanning tunneling microscopy. Our first-principles simulations and theoretical topological analysis demonstrate the correspondence between nonsymmorphic symmetry and Dirac states. This mechanism can be straightforwardly generalized to other nonsymmorphic materials. The results enlighten the search of symmetry-enforced Dirac fermions in the vast uncharted world of nonsymmorphic 2D materials.more » « less
-
Moiré superlattices formed by twisting trilayers of graphene are a useful model for studying correlated electron behaviour and offer several advantages over their formative bilayer analogues, including a more diverse collection of correlated phases and more robust superconductivity. Spontaneous structural relaxation alters the behaviour of moiré superlattices considerably and has been suggested to play an important role in the relative stability of superconductivity in trilayers. Here we use an interferometric four-dimensional scanning transmission electron microscopy approach to directly probe the local graphene layer alignment over a wide range of trilayer graphene structures. Our results inform a thorough understanding of how reconstruction modulates the local lattice symmetries crucial for establishing correlated phases in twisted graphene trilayers, evincing a relaxed structure that is markedly different from that proposed previously.more » « less
-
null (Ed.)Abstract The discovery of interaction-driven insulating and superconducting phases in moiré van der Waals heterostructures has sparked considerable interest in understanding the novel correlated physics of these systems. While a significant number of studies have focused on twisted bilayer graphene, correlated insulating states and a superconductivity-like transition up to 12 K have been reported in recent transport measurements of twisted double bilayer graphene. Here we present a scanning tunneling microscopy and spectroscopy study of gate-tunable twisted double bilayer graphene devices. We observe splitting of the van Hove singularity peak by ~20 meV at half-filling of the conduction flat band, with a corresponding reduction of the local density of states at the Fermi level. By mapping the tunneling differential conductance we show that this correlated system exhibits energetically split states that are spatially delocalized throughout the different regions in the moiré unit cell, inconsistent with order originating solely from onsite Coulomb repulsion within strongly-localized orbitals. We have performed self-consistent Hartree-Fock calculations that suggest exchange-driven spontaneous symmetry breaking in the degenerate conduction flat band is the origin of the observed correlated state. Our results provide new insight into the nature of electron-electron interactions in twisted double bilayer graphene and related moiré systems.more » « less
-
Abstract Tomonaga-Luttinger liquid (TLL) behavior in one-dimensional systems has been predicted and shown to occur at semiconductor-to-metal transitions within two-dimensional materials. Reports of one-dimensional defects hosting a Fermi liquid or a TLL have suggested a dependence on the underlying substrate, however, unveiling the physical details of electronic contributions from the substrate require cross-correlative investigation. Here, we study TLL formation within defectively engineered WS2atop graphene, where band structure and the atomic environment is visualized with nano angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy, and non-contact atomic force microscopy. Correlations between the local density of states and electronic band dispersion elucidated the electron transfer from graphene into a TLL hosted by one-dimensional metal (1DM) defects. It appears that the vertical heterostructure with graphene and the induced charge transfer from graphene into the 1DM is critical for the formation of a TLL.more » « less
An official website of the United States government

