Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

We are concerned with free boundary problems arising from the analysis of multidimensional transonic shock waves for the Euler equations in compressible fluid dynamics. In this expository paper, we survey some recent developments in the analysis of multidimensional transonic shock waves and corresponding free boundary problems for the compressible Euler equations and related nonlinear partial differential equations (PDEs) of mixed type. The nonlinear PDEs under our analysis include the steady Euler equations for potential flow, the steady full Euler equations, the unsteady Euler equations for potential flow, and related nonlinear PDEs of mixed elliptic–hyperbolic type. The transonic shock problems include the problem of steady transonic flow past solid wedges, the von Neumann problem for shock reflection–diffraction, and the Prandtl–Meyer problem for unsteady supersonic flow onto solid wedges. We first show how these longstanding multidimensional transonic shock problems can be formulated as free boundary problems for the compressible Euler equations and related nonlinear PDEs of mixed type. Then we present an effective nonlinear method and related ideas and techniques to solve these free boundary problems. The method, ideas, and techniques should be useful to analyze other longstanding and newly emerging free boundary problems for nonlinear PDEs.Free, publiclyaccessible full text available April 1, 2023

We are concerned with the suitability of the main models of compressible fluid dynamics for the Lighthill problem for shock diffraction by a convex corned wedge, by studying the regularity of solutions of the problem, which can be formulated as a free boundary problem. In this paper, we prove that there is no regular solution that is subsonic up to the wedge corner for potential flow. This indicates that, if the solution is subsonic at the wedge corner, at least a characteristic discontinuity (vortex sheet or entropy wave) is expected to be generated, which is consistent with the experimental and computational results. Therefore, the potential flow equation is not suitable for the Lighthill problem so that the compressible Euler system must be considered. In order to achieve the nonexistence result, a weak maximum principle for the solution is established, and several other mathematical techniques are developed. The methods and techniques developed here are also useful to the other problems with similar difficulties.

When a plane shock hits a twodimensional wedge head on, it experiences a reflectiondiffraction process, and then a selfsimilar reflected shock moves outward as the original shock moves forward in time. The experimental, computational, and asymptotic analysis has indicated that various patterns occur, including regular reflection and Mach reflection. The von Neumann's conjectures on the transition from regular to Mach reflection involve the existence, uniqueness, and stability of regular shock reflectiondiffraction configurations, generated by concave cornered wedges for compressible flow. In this paper, we discuss some recent developments in the study of the von Neumann's conjectures. More specifically, we discuss the uniqueness and stability of regular shock reflectiondiffraction configurations governed by the potential flow equation in an appropriate class of solutions. We first show that the transonic shocks in the global solutions obtained in ChenFeldman [19] are convex. Then we establish the uniqueness of global shock reflectiondiffraction configurations with convex transonic shocks for any wedge angle larger than the detachment angle or the critical angle. Moreover, the solution under consideration is stable with respect to the wedge angle. Our approach also provides an alternative way of proving the existence of the admissible solutions established first in [19].