skip to main content

Search for: All records

Award ID contains: 1764315

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A light-harvesting ruthenium porphyrin substituted covalently with four boron–dipyrrin (BODIPY) moieties has been synthesized and studied. The resulting complex showed an efficient decarbonylation reaction predominantly due to a photo-induced energy transfer process. Chemical oxidation of the ruthenium( ii ) BODIPY–porphyrin afforded a high-energy trans -dioxoruthenium( vi ) species that is one order of magnitude more reactive towards alkene oxidation than those analogues supported by conventional porphyrins. In the presence of visible light, the ruthenium( ii ) BODIPY–porphyrin displayed remarkable catalytic activity toward sulfide oxidation and alkene epoxidation using iodobenzene diacetate [PhI(OAc) 2 ] and 2,6-dichloropyridine N -oxide (Cl 2 pyNO)more »as terminal oxidants, respectively. The findings in this work highlight that porphyrin–BODIPY conjugated metal complexes are potentially useful for visible light-promoted catalytic oxidations.« less