Abstract One-photon-absorbing photosensitizers are commonly used in homogeneous photocatalysis which require the absorption of ultraviolet (UV) /visible light to populate the desired excited states with adequate energy and lifetime. Nevertheless, the limited penetration depth and competing absorption by organic substrates of UV/visible light calls upon exploring the utilization of longer-wavelength irradiation, such as near-infrared light (λ irr > 700 nm). Despite being found applications in photodynamic therapy and bioimaging, two-photon absorption (TPA), the simultaneous absorption of two photons by one molecule, has been rarely explored in homogeneous photocatalysis. Herein, we report a group of ruthenium polypyridyl complexes possessing TPA capability that can drive a variety of organic transformations upon irradiation with 740 nm light. We demonstrate that these TPA ruthenium complexes can operate in an analogous manner as one-photon-absorbing photosensitizers for both energy-transfer and photoredox reactions, as well as function in concert with a transition metal co-catalyst for metallaphotoredox C–C coupling reactions.
more »
« less
Synthesis of a light-harvesting ruthenium porphyrin complex substituted with BODIPY units. Implications for visible light-promoted catalytic oxidations
A light-harvesting ruthenium porphyrin substituted covalently with four boron–dipyrrin (BODIPY) moieties has been synthesized and studied. The resulting complex showed an efficient decarbonylation reaction predominantly due to a photo-induced energy transfer process. Chemical oxidation of the ruthenium( ii ) BODIPY–porphyrin afforded a high-energy trans -dioxoruthenium( vi ) species that is one order of magnitude more reactive towards alkene oxidation than those analogues supported by conventional porphyrins. In the presence of visible light, the ruthenium( ii ) BODIPY–porphyrin displayed remarkable catalytic activity toward sulfide oxidation and alkene epoxidation using iodobenzene diacetate [PhI(OAc) 2 ] and 2,6-dichloropyridine N -oxide (Cl 2 pyNO) as terminal oxidants, respectively. The findings in this work highlight that porphyrin–BODIPY conjugated metal complexes are potentially useful for visible light-promoted catalytic oxidations.
more »
« less
- Award ID(s):
- 1764315
- PAR ID:
- 10253246
- Date Published:
- Journal Name:
- New Journal of Chemistry
- Volume:
- 45
- Issue:
- 11
- ISSN:
- 1144-0546
- Page Range / eLocation ID:
- 4977 to 4985
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mono-hydroxychlorins are uncommon macrocycles that have only been synthetically realized by modifying porphyrin rings using the harsh oxidizing agent OsO4. We show here that a more directed delivery of the mono-hydroxychlorin may be concomitantly obtained from the oxidation of porphyrinogen using the mild conditions of the high dilution Lindsey porphyrin forming reaction where water content is minimized by using dry CHCl3within the environment of a glovebox. We now report the direct synthesis of 17,18-dihydro-18-hydroxy-5,10,15,20-tetrakis-(4-fluoro,2,6-dimethylphenyl)-porphyrin (2H-TFChl-[Formula: see text]OH) together with the corresponding freebase porphyrin TFP. The TFP has been metalated with FeBr2and MgBr2•OEt2resulting in metalloporphyrins Fe(III)TFP(Cl) and Mg(II)-TFP which have been structurally characterized by single-crystal X-ray crystallography. We find that the excited state properties of the mono-hydroxychlorin are similar to that of its parent TFP and Mg(II)TFP porphyrin congeners. Excited state deactivation by vibronic coupling to the high energy O-H oscillator is circumvented with the hydroxyl group remote to the 18[Formula: see text]-electron framework of the chlorin ring. These results reveal that strong H-bonding groups may be introduced on the periphery of the chlorin ring while maintaining the light-gathering properties that lie at the heart of photosynthesis of the chlorin ring.more » « less
-
ABSTRACT We report the synthesis, photochemical and biological characterization of two new Ru(II) photoactivated complexes based on [Ru(tpy)(Me2bpy)(L)]2+(tpy = 2,2':6',2''‐terpyridine, Me2bpy = 6,6'‐dimethyl‐2,2'‐bipyridine), where L = pyridyl‐BODIPY (pyBOD). Two pyBOD ligands were prepared bearing flanking hydrogen or iodine atoms. Ru(II)‐bound BODIPY dyes show a red‐shift of absorption maxima relative to the free dyes and undergo photodissociation of BODIPY ligands with green light irradiation. Addition of iodine into the BODIPY ligand facilitates intersystem crossing, which leads to efficient singlet oxygen production in the free dye, but also enhances quantum yield of release of the BODIPY ligand from Ru(II). This represents the first report of a strategy to enhance photodissociation quantum yields through the heavy‐atom effect in Ru(II) complexes. Furthermore, Ru(II)‐bound BODIPY dyes display fluorescence turn‐on once released, with a lead analog showing nanomolar EC50values against triple negative breast cancer cells, >100‐fold phototherapeutic indexes under green light irradiation, and higher selectivity toward cancer cells as compared to normal cells than the corresponding free BODIPY photosensitizer. Conventional Ru(II) photoactivated complexes require nonbiorthogonal blue light for activation and rarely show submicromolar potency to achieve cell death. Our study represents an avenue for the improved photochemistry and potency of future Ru(II) complexes.more » « less
-
Abstract Water oxidation and concomitant dioxygen formation by the manganese-calcium cluster of oxygenic photosynthesis has shaped the biosphere, atmosphere, and geosphere. It has been hypothesized that at an early stage of evolution, before photosynthetic water oxidation became prominent, light-driven formation of manganese oxides from dissolved Mn(2+) ions may have played a key role in bioenergetics and possibly facilitated early geological manganese deposits. Here we report the biochemical evidence for the ability of photosystems to form extended manganese oxide particles. The photochemical redox processes in spinach photosystem-II particles devoid of the manganese-calcium cluster are tracked by visible-light and X-ray spectroscopy. Oxidation of dissolved manganese ions results in high-valent Mn(III,IV)-oxide nanoparticles of the birnessite type bound to photosystem II, with 50-100 manganese ions per photosystem. Having shown that even today’s photosystem II can form birnessite-type oxide particles efficiently, we propose an evolutionary scenario, which involves manganese-oxide production by ancestral photosystems, later followed by down-sizing of protein-bound manganese-oxide nanoparticles to finally yield today’s catalyst of photosynthetic water oxidation.more » « less
-
Abstract A new iodinated BODIPY dye incorporating a thioether‐ has been synthesized and characterized. The benzimidazole unit was introduced at themeso‐pentafluorophenyl position of the BODIPY scaffold via high‐yield click chemistry. This substitution does not alter the strong absorption and emission properties of the BODIPY chromophore and provides a versatile platform for the attachment of pharmacologically important molecules. Further functionalization of the BODIPY core with iodine at the 3‐ and 5‐positions yields a derivative capable of generating reactive oxygen species when irradiated with low energy light. Experimental evidence confirms the production of both singlet oxygen and superoxide radicals, indicating this complex is capable of operating by both Type I and Type II photosensitization pathways. This dual capacity could be responsible for its effectiveness as a photosensitizer and contribute to its photobiological activity against human melanoma cells.more » « less
An official website of the United States government

