Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In high orbital angular momentum (ℓ ≥ 3) Rydberg states, the centrifugal barrier hinders the close approach of the Rydberg electron to the ion-core. As a result, these core-nonpenetrating Rydberg states can be well described by a simplified model in which the Rydberg electron is only weakly perturbed by the long-range electric properties (i.e., multipole moments and polarizabilities) of the ion-core. We have used a long-range model to describe the vibrational autoionization dynamics of high-ℓ Rydberg states of nitric oxide (NO). In particular, our model explains the extensive angular momentum exchange between the ion-core and the Rydberg electron that had been previously observed in vibrational autoionization of f (ℓ = 3) Rydberg states. These results shed light on a long-standing mechanistic question around these previous observations and support a direct, vibrational mechanism of autoionization over an indirect, predissociation-mediated mechanism. In addition, our model correctly predicts newly measured total decay rates of g (ℓ = 4) Rydberg states because for ℓ ≥ 4, the non-radiative decay is dominated by autoionization rather than predissociation. We examine the predicted NO+ ion rotational state distributions generated by vibrational autoionization of g states and discuss applications of our model to achieve quantum state selection in the production of molecular ions.more » « less
-
null (Ed.)Abstract Bonding in the ground state of C $${}_{2}$$ 2 is still a matter of controversy, as reasonable arguments may be made for a dicarbon bond order of $$2$$ 2 , $$3$$ 3 , or $$4$$ 4 . Here we report on photoelectron spectra of the C $${}_{2}^{-}$$ 2 − anion, measured at a range of wavelengths using a high-resolution photoelectron imaging spectrometer, which reveal both the ground $${X}^{1}{\Sigma}_{\mathrm{g}}^{+}$$ X 1 Σ g + and first-excited $${a}^{3}{\Pi}_{{\mathrm{u}}}$$ a 3 Π u electronic states. These measurements yield electron angular anisotropies that identify the character of two orbitals: the diffuse detachment orbital of the anion and the highest occupied molecular orbital of the neutral. This work indicates that electron detachment occurs from predominantly $$s$$ s -like ( $$3{\sigma}_{\mathrm{g}}$$ 3 σ g ) and $$p$$ p -like ( $$1{\pi }_{{\mathrm{u}}}$$ 1 π u ) orbitals, respectively, which is inconsistent with the predictions required for the high bond-order models of strongly $$sp$$ s p -mixed orbitals. This result suggests that the dominant contribution to the dicarbon bonding involves a double-bonded configuration, with 2 $$\pi$$ π bonds and no accompanying $$\sigma$$ σ bond.more » « less
-
Ammonia is special. It is nonplanar, yet in v = 1 of the umbrella mode (ν 2 ) its inversion motion is faster than J = 0↔1 rotation. Does the simplicity of the Chemist's concept of an electric dipole moment survive the competition between rotation, inversion, and a strong external electric field? NH 3 is a favorite pedagogical example of tunneling in a symmetric double-minimum potential. Tunneling is a dynamical concept, yet the quantitative characteristics of tunneling are expressed in a static, eigenstate-resolved spectrum. The inverting-umbrella tunneling motion in ammonia is both large amplitude and profoundly affected by an external electric field. We report how a uniquely strong (up to 10 8 V/m) direct current (DC) electric field causes a richly detailed sequence of reversible changes in the frequency-domain infrared spectrum (the v = 0→1 transition in the ν 2 umbrella mode) of ammonia, freely rotating in a 10 K Ar matrix. Although the spectrum is static, encoded in it is the complete inter- and intramolecular picture of tunneling dynamics.more » « less
An official website of the United States government

Full Text Available