Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Two key factors bear on reaction rates for the conjugate addition of alkenyl boronic acids to heteroaryl-appended enones: the proximity of inductively electron-withdrawing heteroatoms to the site of bond formation and the resonance contribution of available heteroatom lone pairs to stabilize the developing positive charge at the enone β-position. For the former, the closer the heteroatom is to the enone β-carbon, the faster the reaction. For the latter, greater resonance stabilization of the benzylic cationic charge accelerates the reaction. Thus, reaction rates are increased by the closer proximity of inductive electron-withdrawing elements, but if resonance effects are involved, then increased rates are observed with electron-donating ability. Evidence for these trends in isomeric substrates is presented, and the application of these insights has allowed for reaction conditions that provide improved reactivity with previously problematic substrates.more » « less
-
Organocatalysis has emerged as a powerful synthetic tool in organic chemistry in the last few decades. Among various classes of organocatalysis, chiral diol-based scaffolds, such as BINOLs, VANOLs, and tartaric acid derivatives, have been widely used to induce enantioselectivity due to the ability of the hydroxyls to coordinate with the Lewis acidic sites of reagents or substrates and create a chiral environment for the transformation. In this review, we will discuss the applications of these diol-based catalysts in different types of reactions, including the scopes of reactions and the modes of catalyst activation. In general, the axially chiral aryl diol BINOL and VANOL derivatives serve as the most competent catalyst for most examples, but examples of exclusive success using other scaffolds, herein, suggests that they should not be overlooked. Lastly, the examples, to date, are mainly from tartrate and biaryl diol catalysts, suggesting that innovation may be available from new diol scaffolds.more » « less
An official website of the United States government
