skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rate Dependence on Inductive and Resonance Effects for the Organocatalyzed Enantioselective Conjugate Addition of Alkenyl and Alkynyl Boronic Acids to β-Indolyl Enones and β-Pyrrolyl Enones
Two key factors bear on reaction rates for the conjugate addition of alkenyl boronic acids to heteroaryl-appended enones: the proximity of inductively electron-withdrawing heteroatoms to the site of bond formation and the resonance contribution of available heteroatom lone pairs to stabilize the developing positive charge at the enone β-position. For the former, the closer the heteroatom is to the enone β-carbon, the faster the reaction. For the latter, greater resonance stabilization of the benzylic cationic charge accelerates the reaction. Thus, reaction rates are increased by the closer proximity of inductive electron-withdrawing elements, but if resonance effects are involved, then increased rates are observed with electron-donating ability. Evidence for these trends in isomeric substrates is presented, and the application of these insights has allowed for reaction conditions that provide improved reactivity with previously problematic substrates.  more » « less
Award ID(s):
1800499 2102282
PAR ID:
10221070
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Molecules
Volume:
26
Issue:
6
ISSN:
1420-3049
Page Range / eLocation ID:
1615
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A method for catalytic intermolecular allylic C−H amination oftrans‐disubstituted olefins is reported. The reaction is efficient for a range of common nitrogen nucleophiles bearing one electron‐withdrawing group, and proceeds under mild reaction conditions. Good levels of regioselectivity are observed for a wide range of electronically diversetrans‐β‐alkyl styrene substrates. 
    more » « less
  2. This work demonstrates an in situ etching technique for β-Ga2O3 using solid-source metallic gallium (Ga) in a low-pressure chemical vapor deposition (LPCVD) system, enabling clean, anisotropic, plasma damage-free etching. Etching behavior was systematically studied on (2¯01) β-Ga2O3 films and patterned (010) β-Ga2O3 substrates as a function of temperature (1000–1100 °C), Ar carrier gas flow (80–400 sccm) and Ga source-to-substrate distance (1–5 cm). The process exhibits vapor transport- and surface-reaction-limited behavior, with etch rates reaching a maximum of ∼2.25 µm/h on (010) substrates at 1050 °C and 2 cm spacing. Etch rates decrease sharply with increasing source-to-substrate distance due to reduced Ga vapor availability, while elevated temperatures enhance surface reaction kinetics through increased Ga reactivity and suboxide formation, leading to enhanced etch rates. In-plane anisotropy studies using radial trench patterns reveal that the (100) orientation produces the most stable etch front, characterized by smooth, vertical sidewalls and minimal lateral etching, consistent with its lowest surface free energy. In contrast, orientations such as (101), which possess higher surface energy, exhibit pronounced lateral etching and micro-faceting. As the trench orientation progressively deviates from (100), lateral etching increases. Facet evolution is observed between (100) and (1¯02), where stepped sidewalls composed of alternating (100) and (1¯02) segments progressively transition into a single inclined facet, which stabilizes along (100) or (1¯02) depending on the trench orientation. The (100)-aligned fins exhibit minimal bottom curvature, while (201)-aligned structures display increased under-etching and trench rounding. Collectively, these findings establish LPCVD-based in situ etching as a scalable, damage-free, and orientation-selective technique for fabricating high-aspect-ratio β-Ga2O3 3D structures in next-generation power devices. 
    more » « less
  3. Abstract This study presents a Ni‐photoredox method for indoleN‐arylation, broadening the range of substrates to include indoles with unprotected C3‐positions and base‐sensitive groups. Through detailed mechanistic inquiries, a Ni(I/III) mechanism was uncovered, distinct from those commonly proposed for Ni‐catalyzed amine, thiol, and alcohol arylation, as well as from the Ni(0/II/III) cycle identified for amide arylation under almost identical conditions. The key finding is the formation of a Ni(I) intermediate bearing the indole nucleophile as a ligand prior to oxidative addition, which is rare for Ni‐photoredox carbon‐heteroatom coupling and has a profound impact on the reaction kinetics and scope. The pre‐coordination of indole renders a more electron‐rich Ni(I) intermediate, which broadens the scope by enabling fast reactivity even with challenging electron‐rich aryl bromide substrates. Thus, this work highlights the often‐overlooked influence of X‐type ligands on Ni oxidative addition rates and illustrates yet another mechanistic divergence in Ni‐photoredox C‐heteroatom couplings. 
    more » « less
  4. This study presents a comprehensive analysis of the etching effects on β-Ga2O3 using two methods: H2_N2 (a mixture of hydrogen and nitrogen) etching and triethylgallium (TEGa) in situ etching performed in a metal-organic chemical vapor deposition system. By employing a mix of H2 and N2 gases at varying chamber pressures and maintaining a constant etching temperature of 750 °C, we investigated the etching dynamics across three different β-Ga2O3 orientations: (010), (001), and (2¯01). Field emission scanning electron microscopy analysis showed that the etching behavior of β-Ga2O3 depends on the crystal orientation, with the (010) orientation showing notably uniform and smooth surfaces, indicating its suitability for vertical device applications. High-aspect-ratio β-Ga2O3 fin arrays were fabricated on (010) substrates using H2_N2 etching, yielding fin structures with widths of 2 μm and depths of 3.1 μm, along with smooth and well-defined sidewalls. The etching process achieved exceptionally high etch rates (>18 μm/h) with a strong dependence on pressure and sidewall orientation, revealing the trade-off between etch depth and surface smoothness. Separately, TEGa in situ etching was investigated as an alternative etching technique for both β-Ga2O3 and β-(AlxGa1−x)2O3 films. The results revealed that the (010) orientation exhibited relatively high etching rates while maintaining smoother sidewalls and top surfaces, making it favorable for device processing. In contrast, the (001) orientation showed strong resistance to TEGa etching. Furthermore, Al-incorporated β-(AlxGa1−x)2O3 films showed substantially lower etch rates compared to pure β-Ga2O3, suggesting their potential use as an effective etch-stop layer in advanced device fabrication. 
    more » « less
  5. A series of bis-cyclometalated iridium complexes were prepared which combine triazole or NHC-based cyclometalating ligands with substituted β-diketiminate (NacNac) ancillary ligands. The HOMO is localized on the NacNac ligand and its energy and associated redox potential are determined by the NacNac substitution pattern. The effect of the cyclometalating ligand, relative to the more common 2-phenylpyridine derivatives, is to destabilize the LUMO and increase the triplet excited-state energy ( E T1 ). These results are supported by DFT calculations, which show HOMOs and LUMOs that are respectively localized on the NacNac and cyclometalating ligands. With this new design, we observe more negative excited-state reduction potentials, E (Ir IV /*Ir III ), with two members of the series standing out as the most potent visible-light iridium photoreductants ever reported. Stern–Volmer quenching experiments with ketone acceptors (benzophenone and acetophenone) show that the increased thermodynamic driving force for photoinduced electron-transfer correlates with faster rates relative to fac -Ir(ppy) 3 and previous generations of NacNac-supported iridium complexes. A small selection of photoredox transformations is shown, demonstrating that these new photoreductants are capable of activating challenging organohalide substrates, albeit with modest conversion. 
    more » « less