skip to main content

Search for: All records

Award ID contains: 1800731

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2023
  2. In this note we provide a quasisymmetric taming of uniformly perfect and uniformly disconnected sets that generalizes a result of MacManus [Rev. Mat. Iberoamericana 15 (1999), pp. 267–277] from 2 to higher dimensions. In particular, we show that a compact subset of R n \mathbb {R}^n is uniformly perfect and uniformly disconnected if and only if it is ambiently quasiconformal to the standard Cantor set C \mathcal {C} in R n + 1 \mathbb {R}^{n+1} .
  3. Abstract We investigate the Hölder geometry of curves generated by iterated function systems (IFS) in a complete metric space. A theorem of Hata from 1985 asserts that every connected attractor of an IFS is locally connected and path-connected. We give a quantitative strengthening of Hata’s theorem. First we prove that every connected attractor of an IFS is (1/ s )-Hölder path-connected, where s is the similarity dimension of the IFS. Then we show that every connected attractor of an IFS is parameterized by a (1/ α)-Hölder curve for all α > s . At the endpoint, α = s , a theorem of Remes from 1998 already established that connected self-similar sets in Euclidean space that satisfy the open set condition are parameterized by (1/ s )-Hölder curves. In a secondary result, we show how to promote Remes’ theorem to self-similar sets in complete metric spaces, but in this setting require the attractor to have positive s -dimensional Hausdorff measure in lieu of the open set condition. To close the paper, we determine sharp Hölder exponents of parameterizations in the class of connected self-affine Bedford-McMullen carpets and build parameterizations of self-affine sponges. An interesting phenomenon emerges in the self-affine setting.more »While the optimal parameter s for a self-similar curve in ℝ n is always at most the ambient dimension n , the optimal parameter s for a self-affine curve in ℝ n may be strictly greater than n .« less