skip to main content

Title: Hölder Parameterization of Iterated Function Systems and a Self-Aflne Phenomenon
Abstract We investigate the Hölder geometry of curves generated by iterated function systems (IFS) in a complete metric space. A theorem of Hata from 1985 asserts that every connected attractor of an IFS is locally connected and path-connected. We give a quantitative strengthening of Hata’s theorem. First we prove that every connected attractor of an IFS is (1/ s )-Hölder path-connected, where s is the similarity dimension of the IFS. Then we show that every connected attractor of an IFS is parameterized by a (1/ α)-Hölder curve for all α > s . At the endpoint, α = s , a theorem of Remes from 1998 already established that connected self-similar sets in Euclidean space that satisfy the open set condition are parameterized by (1/ s )-Hölder curves. In a secondary result, we show how to promote Remes’ theorem to self-similar sets in complete metric spaces, but in this setting require the attractor to have positive s -dimensional Hausdorff measure in lieu of the open set condition. To close the paper, we determine sharp Hölder exponents of parameterizations in the class of connected self-affine Bedford-McMullen carpets and build parameterizations of self-affine sponges. An interesting phenomenon emerges in the self-affine setting. more » While the optimal parameter s for a self-similar curve in ℝ n is always at most the ambient dimension n , the optimal parameter s for a self-affine curve in ℝ n may be strictly greater than n . « less
Authors:
;
Award ID(s):
1952510 1800731 1650546
Publication Date:
NSF-PAR ID:
10280220
Journal Name:
Analysis and Geometry in Metric Spaces
Volume:
9
Issue:
1
Page Range or eLocation-ID:
90 to 119
ISSN:
2299-3274
Sponsoring Org:
National Science Foundation
More Like this
  1. Let f be a drawing in the Euclidean plane of a graph G, which is understood to be a 1-dimensional simplicial complex. We assume that every edge of G is drawn by f as a curve of constant algebraic complexity, and the ratio of the length of the longest simple path to the the length of the shortest edge is poly(n). In the drawing f, a path P of G, or its image in the drawing π = f(P), is β-stretch if π is a simple (non-self-intersecting) curve, and for every pair of distinct points p ∈ P and q ∈ P , the length of the sub-curve of π connecting f(p) with f(q) is at most β∥f(p) − f(q)∥, where ∥.∥ denotes the Euclidean distance. We introduce and study the β-stretch Path Problem (βSP for short), in which we are given a pair of vertices s and t of G, and we are to decide whether in the given drawing of G there exists a β-stretch path P connecting s and t. We also output P if it exists. The βSP quantifies a notion of “near straightness” for paths in a graph G, motivated by gerrymandering regions in amore »map, where edges of G represent natural geographical/political boundaries that may be chosen to bound election districts. The notion of a β-stretch path naturally extends to cycles, and the extension gives a measure of how gerrymandered a district is. Furthermore, we show that the extension is closely related to several studied measures of local fatness of geometric shapes. We prove that βSP is strongly NP-complete. We complement this result by giving a quasi-polynomial time algorithm, that for a given ε > 0, β ∈ O(poly(log |V (G)|)), and s, t ∈ V (G), outputs a β-stretch path between s and t, if a (1 − ε)β-stretch path between s and t exists in the drawing.« less
  2. Abstract

    Positive$$k\mathrm{th}$$kth-intermediate Ricci curvature on a Riemanniann-manifold, to be denoted by$${{\,\mathrm{Ric}\,}}_k>0$$Rick>0, is a condition that interpolates between positive sectional and positive Ricci curvature (when$$k =1$$k=1and$$k=n-1$$k=n-1respectively). In this work, we produce many examples of manifolds of$${{\,\mathrm{Ric}\,}}_k>0$$Rick>0withksmall by examining symmetric and normal homogeneous spaces, along with certain metric deformations of fat homogeneous bundles. As a consequence, we show that every dimension$$n\ge 7$$n7congruent to$$3\,{{\,\mathrm{mod}\,}}4$$3mod4supports infinitely many closed simply connected manifolds of pairwise distinct homotopy type, all of which admit homogeneous metrics of$${{\,\mathrm{Ric}\,}}_k>0$$Rick>0for some$$kk<n/2. We also prove that each dimension$$n\ge 4$$n4congruent to 0 or$$1\,{{\,\mathrm{mod}\,}}4$$1mod4supports closed manifolds which carry metrics of$${{\,\mathrm{Ric}\,}}_k>0$$Rick>0with$$k\le n/2$$kn/2, but do not admit metrics of positive sectional curvature.

  3. Route reconstruction is an important application for Geographic Information Systems (GIS) that rely heavily upon GPS data and other location data from IoT devices. Many of these techniques rely on geometric methods involving the \frechet\ distance to compare curve similarity. The goal of reconstruction, or map matching, is to find the most similar path within a given graph to a given input curve, which is often approximate location data. This process can be approximated by sampling the curves and using the \dfd. Due to power and coverage constraints, the GPS data itself may be sparse causing improper constraints along the edges during the reconstruction if only the continuous \frechet\ distance is used. Here, we look at two variations of discrete map matching: one constraining the walk length and the other limiting the number of vertices visited in the graph. %, and the constraint that the walk may not self-intersect. We give an efficient algorithm to solve the question based on walk length showing it is in \textbf{P}. We prove the other problem is \npc\ and the minimization variant is \apx\ while also giving a parameterized algorithm to solve the problem.
  4. Abstract We prove that, for every closed (not necessarily convex) hypersurface Σ in ℝ n + 1 {\mathbb{R}^{n+1}} and every p > n {p>n} , the L p {L^{p}} -norm of the trace-free part of the anisotropic second fundamental form controls from above the W 2 , p {W^{2,p}} -closeness of Σ to the Wulff shape. In the isotropic setting, we provide a simpler proof. This result is sharp since in the subcritical regime p ≤ n {p\leq n} , the lack of convexity assumptions may lead in general to bubbling phenomena.Moreover, we obtain a stability theorem for quasi-Einstein (not necessarily convex) hypersurfaces and we improve the quantitative estimates in the convex setting.
  5. Registering functions (curves) using time warpings (re-parameterizations) is central to many computer vision and shape analysis solutions. While traditional registration methods minimize penalized-L2 norm, the elastic Riemannian metric and square-root velocity functions (SRVFs) have resulted in significant improvements in terms of theory and practical performance. This solution uses the dynamic programming algorithm to minimize the L2 norm between SRVFs of given functions. However, the computational cost of this elastic dynamic programming framework – O(nT 2 k) – where T is the number of time samples along curves, n is the number of curves, and k < T is a parameter – limits its use in applications involving big data. This paper introduces a deep-learning approach, named SRVF Registration Net or SrvfRegNet to overcome these limitations. SrvfRegNet architecture trains by optimizing the elastic metric-based objective function on the training data and then applies this trained network to the test data to perform fast registration. In case the training and the test data are from different classes, it generalizes to the test data using transfer learning, i.e., retraining of only the last few layers of the network. It achieves the state-of-the-art alignment performance albeit at much reduced computational cost. We demonstrate themore »efficiency and efficacy of this framework using several standard curve datasets.« less