- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Lippner, Gabor (3)
-
Chan, Ada (1)
-
Cunningham, William J. (1)
-
Drazen, Whitney (1)
-
Eisenberg, Or (1)
-
Kempton, Mark (1)
-
Krioukov, Dmitri (1)
-
Mossel, Elchanan (1)
-
Trugenberger, Carlo (1)
-
Van der Hoorn, Pim (1)
-
van der Hoorn, Pim (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We compute the leading asymptotics of the logarithm of the number of $$d$$-regular graphs having at least a fixed positive fraction $$c$$ of the maximum possible number of triangles, and provide a strong structural description of almost all such graphs. When $$d$$ is constant, we show that such graphs typically consist of many disjoint $(d+1)$-cliques and an almost triangle-free part. When $$d$$ is allowed to grow with $$n$$, we show that such graphs typically consist of very dense sets of size $d+o(d)$ together with an almost triangle-free part. This confirms a conjecture of Collet and Eckmann from 2002 and considerably strengthens their observation that the triangles cannot be totally scattered in typical instances of regular graphs with many triangles.more » « less
-
van der Hoorn, Pim; Cunningham, William J.; Lippner, Gabor; Trugenberger, Carlo; Krioukov, Dmitri (, Physical Review Research)null (Ed.)
-
Chan, Ada; Drazen, Whitney; Eisenberg, Or; Kempton, Mark; Lippner, Gabor (, Algebraic Combinatorics)
An official website of the United States government
