skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1800738

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We compute the leading asymptotics of the logarithm of the number of $d$-regular graphs having at least a fixed positive fraction $c$ of the maximum possible number of triangles, and provide a strong structural description of almost all such graphs. When $d$ is constant, we show that such graphs typically consist of many disjoint $(d+1)$-cliques and an almost triangle-free part. When $d$ is allowed to grow with $n$, we show that such graphs typically consist of very dense sets of size $d+o(d)$ together with an almost triangle-free part. This confirms a conjecture of Collet and Eckmann from 2002 and considerably strengthens their observation that the triangles cannot be totally scattered in typical instances of regular graphs with many triangles. 
    more » « less
  2. null (Ed.)