skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1800810

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Coastal saltmarshes keep pace with sea-level rise through in-situ production of organic material and incorporation of allochthonous inorganic sediment. Here we report rates of vertical accretion of 16 new sediment cores collected proximal to platform edges within saltmarshes located behind four barrier islands along the southeast United States coast. All but two of these exceed the contemporaneous rate of relative sea-level rise, often by a factor of 1.5 or more. Comparison with 80 additional measurements compiled across the Georgia Bight reveals that marshes situated closer to inlets and large bays generally accrete faster than those adjacent to small creeks or within platform interiors. These results demonstrate a spatial dichotomy in the resilience of backbarrier saltmarshes: marsh interiors are near a tipping point, but allochthonous mineral sediment fluxes allow enhanced local resilience along well-exposed and platform-edge marshes. Together, this suggests that backbarrier marshes are trending towards rapid, doughnut-like fragmentation. 
    more » « less
  2. Abstract Expansion of drainage networks through the headward erosion of tidal creeks is an eco‐geomorphologic response of salt marshes to accelerated sea‐level rise (SLR). This response can counter the negative impacts of an elevation deficit by increasing drainage and encouraging plant health, thereby reducing potential for submergence and marsh platform loss. In the wetlands of Cape Romain, SC, intense bioturbation near creek heads by the common marsh crabSesarma reticulatumhas been found to facilitate sediment erosion and rapid creek growth. This keystone grazer has been recently observed to have increasing influence on landscape evolution throughout the southeast US coast. Here, we compare measurements taken at Sapelo Island, GA, with those previously collected at Cape Romain, to confirm that eco‐geomorphic feedbacks facilitating creek growth at each location are similar, and to compare these processes under differing background conditions. We use sediment cores, precise elevation measurements and historical imagery to compare substrate properties, elevation within the tidal frame, creek growth rates and drainage morphology at both sites. Our results show identical processes; however, the higher elevation of the marsh at Sapelo Island leads to shallower and shorter periods of tidal inundation, explaining the greater soil strength and lower belowground biomass compared with the marsh at Cape Romain. The smaller tidal range at the site in Cape Romain compared with Sapelo Island translates to a proportionally shallower depth of tidal creeks, which therefore requires less erosion to produce headward creek extension. These effects are likely to have contributed to slower growth rates of tidal creeks at Sapelo Island during the past several decades of SLR. Our findings highlight the similarities in process but differences in rates in how marshes are responding to climate‐related stress. 
    more » « less
  3. Data set of measured sediment characteristics and vertical accretion rates of backbarrier marshes along the Georgia Bight. Data include bulk density (g/cm^3), water content (%), organic content (%), Pb-210 (Bq/kg), Cs-137 (Bq/kg), and calculated rates of vertical accretion (mm/yr) as measured from sediment cores collected during December 2017. Data are provided as CSV files. 
    more » « less