Abstract The long‐term stability of coastal wetlands is determined by interactions among sea level, plant primary production, sediment supply, and wetland vertical accretion. Human activities in watersheds have significantly altered sediment delivery from the landscape to the coastal ocean, with declines along much of the U.S. East Coast. Tidal wetlands in coastal systems with low sediment supply may have limited ability to keep pace with accelerating rates of sea‐level rise (SLR). Here, we show that rates of vertical accretion and carbon accumulation in nine tidal wetland systems along the U.S. East Coast from Maine to Georgia can be explained by differences in the rate of relative SLR (RSLR), the concentration of suspended sediments in the rivers draining to the coast, and temperature in the coastal region. Further, we show that rates of vertical accretion have accelerated over the past century by between 0.010 and 0.083 mm yr−2, at roughly the same pace as the acceleration of global SLR. We estimate that rates of carbon sequestration in these wetland soils have accelerated (more than doubling at several sites) along with accelerating accretion. Wetland accretion and carbon accumulation have accelerated more rapidly in coastal systems with greater relative RSLR, higher watershed sediment availability, and lower temperatures. These findings suggest that the biogeomorphic feedback processes that control accretion and carbon accumulation in these tidal wetlands have responded to accelerating RSLR, and that changes to RSLR, watershed sediment supply, and temperature interact to determine wetland vulnerability across broad geographic scales.
more »
« less
Rates of vertical accretion of backbarrier marshes along the Georgia Bight as measured from sediment cores collected during December 2017 (NCEI Accession 0286629)
Data set of measured sediment characteristics and vertical accretion rates of backbarrier marshes along the Georgia Bight. Data include bulk density (g/cm^3), water content (%), organic content (%), Pb-210 (Bq/kg), Cs-137 (Bq/kg), and calculated rates of vertical accretion (mm/yr) as measured from sediment cores collected during December 2017. Data are provided as CSV files.
more »
« less
- PAR ID:
- 10519593
- Publisher / Repository:
- NOAA National Centers for Environmental Information
- Date Published:
- Format(s):
- Medium: X
- Location:
- (East Bound Longitude:-79.1716861111; North Bound Latitude:33.3501083333; South Bound Latitude:30.539875971; West Bound Longitude:-81.5158677806)
- Institution:
- Virginia Institute of Marine Science
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the western U.S., produced water from oil and gas wells discharged to surface water augments downstream supplies used for irrigation and livestock watering. Here we investigate six permitted discharges on three neighboring tributary systems in Wyoming. During 2013–16, we evaluated radium activities of the permitted discharges and the potential for radium accumulation in associated stream sediments. Radium activities of the sediments at the points of discharge ranged from approximately 200–3600 Bq kg −1 with elevated activities above the background of 74 Bq kg −1 over 30 km downstream of one permitted discharge. Sediment as deep as 30 cm near the point of discharge had radium activities elevated above background. X-ray diffraction and targeted sequential extraction of radium in sediments indicate that radium is likely coprecipitated with carbonate and, to a lesser extent, sulfate minerals. PHREEQC modeling predicts radium coprecipitation with aragonite and barite, but over-estimates the latter compared to observations of downstream sediment, where carbonate predominates. Mass-balance calculations indicate over 3 billion Bq of radium activity ( 226 Ra + 228 Ra) is discharged each year from five of the discharges, combined, with only 5 percent of the annual load retained in stream sediments within 100 m of the effluent discharges; the remaining 95 percent of the radium is transported farther downstream as sediment-associated and aqueous species.more » « less
-
Wildfires act as potent agents of weathering and erosion, triggering the mobilization of dry ravel sediment and often resulting in temporary increases in sediment transport rates and associated debris-flow hazards. Existing hillslope sediment flux models fail to adequately capture the complex dynamics between erosion and deposition, particularly after wildfires and in landscapes dominated by processes such as bioturbation, tree falls, or other disturbances. To better understand bioturbated dry ravel and subsurface soil properties, we seek to study two hillslopes affected by the 2020 Santa Clara Unit Lightning Complex Fire at the University of California Blue Oak Ranch Reserve near San Jose, CA, by employing a novel application of short-lived radionuclides to characterize dry ravel transport processes. We used gamma spectroscopy on soil cores and recently excavated material from squirrel burrows, sampled along transects from the channel to the ridge on two opposing hillslopes to determine the concentrations of short-lived meteoric radionuclide 210Pb. Our initial findings indicate that the excess 210Pb in soil core sediment varies from the hillslope ridge to toe. In the ridge soil cores, concentrations initially increase within the top 5 cm, followed by a sharp exponential decline with depth. However, the toe soil cores show a sharp exponential decrease in concentrations from the soil surface to ~35-45 cm depth. The toe cores have a concentration of ~ 80 Bq/kg near the surface, while the ridge cores have a much lower concentration of ~ 30 Bq/kg. Based on this preliminary data, we infer that deposition of lower-concentration soil excavated from squirrel burrows leads to mixing of the upper soil layers. In contrast, the well-preserved exponential decay profile and higher surface concentrations at the steeper toe locations indicate less mixing overall. These initial findings warrant further examination of sediment characteristics at various depths through continued gamma spectroscopy and comparative analysis of shallow subsurface structure from ground-penetrating radar. These observations enhance our understanding of the roles of surface gradient and bioturbation in post-fire steepland sediment dynamics.more » « less
-
Hurricanes are recurring high-energy disturbances in coastal regions that change community structure and function of mangrove wetlands. However, most of the studies assessing hurricane impacts on mangroves have focused on negative effects without considering the positive influence of hurricane-induced sediment deposition and associated nutrient fertilization on mangrove productivity and resilience. Here, we quantified how Hurricane Irma influenced soil nutrient pools, vertical accretion, and plant phosphorus (P) uptake after its passage across the Florida Coastal Everglades in September 2017. Vertical accretion from Irma’s deposits was 6.7 to 14.4 times greater than the long-term (100 y) annual accretion rate (0.27 ± 0.04 cm y−1). Storm deposits extended up to 10-km inland from the Gulf of Mexico. Total P (TP) inputs were highest at the mouth of estuaries, with P concentration double that of underlying surface (top 10 cm) soils (0.19 ± 0.02 mg cm−3). This P deposition contributed 49 to 98% to the soil nutrient pool. As a result, all mangrove species showed a significant increase in litter foliar TP and soil porewater inorganic P concentrations in early 2018, 3 mo after Irma’s impact, thus underscoring the interspecies differences in nutrient uptake. Mean TP loading rates were five times greater in southwestern (94 ± 13 kg ha−1d−1) mangrove-dominated estuaries compared to the southeastern region, highlighting the positive role of hurricanes as a natural fertilization mechanism influencing forest productivity. P-rich, mineral sediments deposited by hurricanes create legacies that facilitate rapid forest recovery, stimulation of peat soil development, and resilience to sea-level rise.more » « less
-
null (Ed.)To determine whether mangrove soil accretion can keep up with increasing rates of sea level rise, we modeled the theoretical, steady-state (i.e., excluding hurricane impacts) limits to vertical soil accretion in riverine mangrove forests on the southwest coast of Florida, USA. We measured dry bulk density (BD) and loss on ignition (LOI) from mangrove soils collected over a period of 12 years along an estuarine transect of the Shark River. The plotted relationship between BD and LOI was fit to an idealized mixing model equation that provided estimates of organic and inorganic packing densities in the soils. We used these estimates in combination with measures of root production and mineral deposition to calculate their combined contribution to steady-state, vertical soil accretion. On average, the modeled rates of accretion (0.9 to 2.4 mm year−1) were lower than other measured rates of soil accretion at these sites and far less than a recent estimate of sea level rise in south Florida (7.7 mm year−1). To date, however, no evidence of mangrove “drowning” has been observed in this region of the Everglades, indicating that assumptions of the linear accretion model are invalid and/or other contributions to soil accretion (e.g., additional sources of organic matter; feedbacks between physical sedimentation processes and biological responses to short-term environmental change) make up the accretion deficit. This exercise highlights the potential positive impacts of hurricanes on non-steady-state soil accretion that contribute to the persistence of neotropical mangroves in regions of high disturbance frequency such as the Gulf of Mexico and the Caribbean region.more » « less
An official website of the United States government
