skip to main content


Search for: All records

Award ID contains: 1801751

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 4, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Free, publicly-accessible full text available May 1, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. This paper reports our recent practice of recommending articles to cold-start users at Tencent. Transferring knowledge from information-rich domains to help user modeling is an effective way to address the user-side cold-start problem. Our previous work demonstrated that general-purpose user embeddings based on mobile app usage helped article recommendations. However, high-dimensional embeddings are cumbersome for online usage, thus limiting the adoption. On the other hand, user clustering, which partitions users into several groups, can provide a lightweight, online-friendly, and explainable way to help recommendations. Effective user clustering for article recommendations based on mobile app usage faces unique challenges, including (1) the gap between an active user’s behavior of mobile app usage and article reading, and (2) the gap between mobile app usage patterns of active and cold-start users. To address the challenges, we propose a tailored Dual Alignment User Clustering (DAUC) model, which applies a sample-wise contrastive alignment to liminate the gap between active users’ mobile app usage and article reading behavior, and a distribution-wise adversarial alignment to eliminate the gap between active users’ and cold-start users’ app usage behavior. With DAUC, cold-start recommendation-optimized user clustering based on mobile app usage can be achieved. On top of the user clusters, we further build candidate generation strategies, real-time features, and corresponding ranking models without much engineering difficulty. Both online and offline experiments demonstrate the effectiveness of our work. 
    more » « less
  6. null (Ed.)
    Abstract Research showed that deep learning models are vulnerable to membership inference attacks, which aim to determine if an example is in the training set of the model. We propose a new framework to defend against this sort of attack. Our key insight is that if we retrain the original classifier with a new dataset that is independent of the original training set while their elements are sampled from the same distribution, the retrained classifier will leak no information that cannot be inferred from the distribution about the original training set. Our framework consists of three phases. First, we transferred the original classifier to a Joint Energy-based Model (JEM) to exploit the model’s implicit generative power. Then, we sampled from the JEM to create a new dataset. Finally, we used the new dataset to retrain or fine-tune the original classifier. We empirically studied different transfer learning schemes for the JEM and fine-tuning/retraining strategies for the classifier against shadow-model attacks. Our evaluation shows that our framework can suppress the attacker’s membership advantage to a negligible level while keeping the classifier’s accuracy acceptable. We compared it with other state-of-the-art defenses considering adaptive attackers and showed our defense is effective even under the worst-case scenario. Besides, we also found that combining other defenses with our framework often achieves better robustness. Our code will be made available at https://github.com/ChenJiyu/meminf-defense.git . 
    more » « less
  7. null (Ed.)
  8. Recent work in adversarial machine learning started to focus on the visual perception in autonomous driving and studied Adversarial Examples (AEs) for object detection models. However, in such visual perception pipeline the detected objects must also be tracked, in a process called Multiple Object Tracking (MOT), to build the moving trajectories of surrounding obstacles. Since MOT is designed to be robust against errors in object detection, it poses a general challenge to existing attack techniques that blindly target objection detection: we find that a success rate of over 98% is needed for them to actually affect the tracking results, a requirement that no existing attack technique can satisfy. In this paper, we are the first to study adversarial machine learning attacks against the complete visual perception pipeline in autonomous driving, and discover a novel attack technique, tracker hijacking, that can effectively fool MOT using AEs on object detection. Using our technique, successful AEs on as few as one single frame can move an existing object in to or out of the headway of an autonomous vehicle to cause potential safety hazards. We perform evaluation using the Berkeley Deep Drive dataset and find that on average when 3 frames are attacked, our attack can have a nearly 100% success rate while attacks that blindly target object detection only have up to 25%. 
    more » « less