- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Weyman, Jerzy (3)
-
Celikbas, Ela (1)
-
Jai, Laxmi (1)
-
Kraskiewicz, Witold (1)
-
Lee, Kyu-Hwan (1)
-
Lorincz, Andras (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper we define an interesting family of perfect ideals of codimension three, with five generators, of Cohen-Macaulay type two with trivial multiplication on the $$ \operatorname {Tor}$$ algebra. This family is likely to play a key role in classifying perfect ideals with five generators of type two.more » « less
-
Lee, Kyu-Hwan; Weyman, Jerzy (, Daehan suhaghoe nonmunjib)In this paper we give some branching rules for the fundamental representations of Kac--Moody Lie algebras associated to $$T$$-shaped graphs. These formulas are useful to describe generators of the generic rings for free resolutions of length three described in \cite{JWm18}. We also make some conjectures about the generic rings.more » « less
-
Lorincz, Andras; Weyman, Jerzy (, Transactions of the American Mathematical Society)We use the Kempf-Lascoux-Weyman geometric technique in order to determine the minimal free resolutions of some orbit closures of quivers. As a consequence, we obtain that for Dynkin quivers orbit closures of 1-step representations are normal with rational singularities. For Dynkin quivers of type $$ \mathbb{A}$$, we describe explicit minimal generators of the defining ideals of orbit closures of 1-step representations. Using this, we provide an algorithm for type $$ \mathbb{A}$$ quivers for describing an efficient set of generators of the defining ideal of the orbit closure of any representation.more » « less
An official website of the United States government
