skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Free resolutions of orbit closures of Dynkin quivers
We use the Kempf-Lascoux-Weyman geometric technique in order to determine the minimal free resolutions of some orbit closures of quivers. As a consequence, we obtain that for Dynkin quivers orbit closures of 1-step representations are normal with rational singularities. For Dynkin quivers of type $$ \mathbb{A}$$, we describe explicit minimal generators of the defining ideals of orbit closures of 1-step representations. Using this, we provide an algorithm for type $$ \mathbb{A}$$ quivers for describing an efficient set of generators of the defining ideal of the orbit closure of any representation.  more » « less
Award ID(s):
1802067
PAR ID:
10163653
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Transactions of the American Mathematical Society
Volume:
372
ISSN:
0002-9947
Page Range / eLocation ID:
2715-2734
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The duality principle for group representations developed in Dutkay et al. (J Funct Anal 257:1133–1143, 2009), Han and Larson (Bull Lond Math Soc 40:685–695, 2008) exhibits a fact that the well-known duality principle in Gabor analysis is not an isolated incident but a more general phenomenon residing in the context of group representation theory. There are two other well-known fundamental properties in Gabor analysis: the biorthogonality and the fundamental identity of Gabor analysis. The main purpose of this this paper is to show that these two fundamental properties remain to be true for general projective unitary group representations. Moreover, we also present a general duality theorem which shows that that muti-frame generators meet super-frame generators through a dual commutant pair of group representations. Applying it to the Gabor representations, we obtain that $$\{\pi _{\Lambda }(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda }(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ ( m , n ) g k } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})\oplus \cdots \oplus L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) ⊕ ⋯ ⊕ L 2 ( R d ) if and only if $$\cup _{i=1}^{k}\{\pi _{\Lambda ^{o}}(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ o ( m , n ) g i } m , n ∈ Z d is a Riesz sequence, and $$\cup _{i=1}^{k} \{\pi _{\Lambda }(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ ( m , n ) g i } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) if and only if $$\{\pi _{\Lambda ^{o}}(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda ^{o}}(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ o ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ o ( m , n ) g k } m , n ∈ Z d is a Riesz sequence, where $$\pi _{\Lambda }$$ π Λ and $$\pi _{\Lambda ^{o}}$$ π Λ o is a pair of Gabor representations restricted to a time–frequency lattice $$\Lambda $$ Λ and its adjoint lattice $$\Lambda ^{o}$$ Λ o in $${\mathbb {R}}\,^{d}\times {\mathbb {R}}\,^{d}$$ R d × R d . 
    more » « less
  2. A new type of quiver theories, denoted twin quivers, was recently introduced for studying 5d SCFTs engineered by webs of 5-branes ending on 7-branes. Twin quivers provide an alternative perspective on various aspects of such webs, including Hanany-Witten moves and the s-rule. More ambitiously, they can be regarded as a first step towards the construction of combinatorial objects, generalizing brane tilings, encoding the corresponding BPS quivers. This paper continues the investigation of twin quivers, focusing on their non-uniqueness, which stems from the multiplicity of toric phases for a given toric Calabi-Yau 3-fold. We find that the different twin quivers are necessary for describing what we call quiver tails, which in turn correspond to certain sub-configurations in the webs. More generally, the multiplicity of twin quivers captures the roots of the Higgs branch in the extended Coulomb branch of 5d theories. 
    more » « less
  3. Exceptional sequences are certain sequences of quiver representations. We introduce a class of objects called strand diagrams and use these to classify exceptional sequences of representations of a quiver whose underlying graph is a type An Dynkin diagram. We also use variations of these objects to classify $$c$$-matrices of such quivers, to interpret exceptional sequences as linear extensions of explicitly constructed posets, and to give a simple bijection between exceptional sequences and certain saturated chains in the lattice of noncrossing partitions. 
    more » « less
  4. Abstract In this paper we explore determinantal representations of multiaffine polynomials and consequences for the image of various spaces of matrices under the principal minor map. We show that a real multiaffine polynomial has a definite Hermitian determinantal representation if and only if all of its so-called Rayleigh differences factor as Hermitian squares and use this characterization to conclude that the image of the space of Hermitian matrices under the principal minor map is cut out by the orbit of finitely many equations and inequalities under the action of $$(\textrm{SL}_{2}(\mathbb{R}))^{n} \rtimes S_{n}$$. We also study such representations over more general fields with quadratic extensions. Factorizations of Rayleigh differences prove an effective tool for capturing subtle behavior of the principal minor map. In contrast to the Hermitian case, we give examples to show for any field $$\mathbb{F}$$, there is no finite set of equations whose orbit under $$(\textrm{SL}_{2}(\mathbb{F}))^{n} \rtimes S_{n}$$ cuts out the image of $$n\times n$$ matrices over $${\mathbb{F}}$$ under the principal minor map for every $$n$$. 
    more » « less
  5. Abstract We consider a special class of unipotent periods for automorphic forms on a finite cover of a reductive adelic group $$\mathbf {G}(\mathbb {A}_\mathbb {K})$$ G ( A K ) , which we refer to as Fourier coefficients associated to the data of a ‘Whittaker pair’. We describe a quasi-order on Fourier coefficients, and an algorithm that gives an explicit formula for any coefficient in terms of integrals and sums involving higher coefficients. The maximal elements for the quasi-order are ‘Levi-distinguished’ Fourier coefficients, which correspond to taking the constant term along the unipotent radical of a parabolic subgroup, and then further taking a Fourier coefficient with respect to a $${\mathbb K}$$ K -distinguished nilpotent orbit in the Levi quotient. Thus one can express any Fourier coefficient, including the form itself, in terms of higher Levi-distinguished coefficients. In companion papers we use this result to determine explicit Fourier expansions of minimal and next-to-minimal automorphic forms on split simply-laced reductive groups, and to obtain Euler product decompositions of certain Fourier coefficients. 
    more » « less