Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We compute and compare the (intersection) cohomology of various natural geometric compactifications of the moduli space of cubic threefolds: the GIT compactification and its Kirwan blowup, as well as the Baily–Borel and toroidal compactifications of the ball quotient model, due to Allcock–Carlson–Toledo. Our starting point is Kirwan’s method. We then follow by investigating the behavior of the cohomology under the birational maps relating the various models, using the decomposition theorem in different ways, and via a detailed study of the boundary of the ball quotient model. As an easy illustration of our methods, the simpler case of the moduli space of cubic surfaces is discussed in an appendix.more » « less
-
Abstract We classify the symplectic automorphism groups for cubic fourfolds. The main inputs are the global Torelli theorem for cubic fourfolds and the classification of the fixed-point sublattices of the Leech lattice. Among the highlights of our results, we note that there are 34 possible groups of symplectic automorphisms, with 6 maximal cases. The six maximal cases correspond to 8 non-isomorphic, and isolated in moduli, cubic fourfolds; six of them previously identified by other authors. Finally, the Fermat cubic fourfold has the largest possible order (174, 960) for the automorphism group (non-necessarily symplectic) among all smooth cubic fourfolds.more » « less
An official website of the United States government

Full Text Available