skip to main content


Search for: All records

Award ID contains: 1803695

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Singh R.P., Chalivendra V. (Ed.)
    Thin-walled structures have been widely used in automotive and aerospace industries to improve the system crashworthiness and impact protection. However, during manufacturing, transporting and handling processes, initial geometric imperfections are inevitably introduced to the thin-walled structures, which imposes negative impacts to the mechanical performance and service life of the thin-walled structures. In this study, we have introduced structural imperfection with controlled geometry and dimension to thin-walled steel tubes and characterized the mechanical response of these empty tubes and LN-filled tubes by quasi-static compression tests. Results show, the structural imperfection reduces the energy absorption capacity of empty tubes by about 20%. As the tube is filled with LN, the structural imperfection does not affect the energy absorption capacity of LN filled tube. The enhanced imperfection resistance is attributed to the suppression of imperfection growth caused by the strong liquid-solid interaction between the LN and tube wall. These findings suggest that the LN filling material can effectively reduce the adverse impact of structural imperfection and shed light on future design of thin-walled energy absorption devices. 
    more » « less
  3. null (Ed.)
  4. The suspension of nanoporous particles in a nonwetting liquid provides a unique solution to the crux of superfluid, sensing, and energy conversion, yet is challenged by the incomplete outflow of intruded liquid out of nanopores for the system reusability. We report that a continuous and spontaneous liquid outflow from hydrophobic nanopores with high and stable efficiency can be achieved by regulating the confinement of solid–liquid interactions with functionalized nanopores or/and liquids. Full-scale molecular-dynamics simulations reveal that the grafted silyl chains on nanopore wall surfaces will promote the hydrophobic confinement of liquid molecules and facilitate the molecular outflow; by contrast, the introduction of ions in the liquid weakens the hydrophobic confinement and congests the molecular outflow. Both one-step and multistep well-designed quasistatic compression experiments on a series of nanopores/nonwetting liquid material systems have been performed, and the results confirm the outflow mechanism in remarkable agreement with simulations. This study offers a fundamental understanding of the outflow of confined liquid from hydrophobic nanopores, potentially useful for devising emerging nanoporous-liquid functional systems with reliable and robust reusability.

     
    more » « less