skip to main content


Search for: All records

Award ID contains: 1804550

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Converging evidence in human and animal models suggests that exogenous stimulation of the motor cortex (M1) elicits responses in the hand with similar modular structure to that found during voluntary grasping movements. The aim of this study was to establish the extent to which modularity in muscle responses to transcranial magnetic stimulation (TMS) to M1 resembles modularity in muscle activation during voluntary hand movements involving finger fractionation. EMG was recorded from eight hand-forearm muscles in nine healthy individuals. Modularity was defined using non-negative matrix factorization to identify low rank approximations (spatial muscle synergies) of the complex activation patterns of EMG data recorded during high density TMS mapping of M1 and voluntary formation of gestures in the American Sign Language alphabet. Analysis of synergies as a set, and individually, revealed greater than chance similarity between those derived from TMS and those derived from voluntary movement. Both datasets included synergies dominated by single intrinsic hand muscles presumably to meet the demand for highly fractionated finger movement. These results suggest a cortical role in combining corticospinal connectivity to individual intrinsic hand muscles with modular mulit-muscle activation via synergies. 
    more » « less
  2. The effectiveness of human-robot interactions critically depends on the success of computational efforts to emulate human inference of intent, anticipation of action, and coordination of movement. To this end, we developed two models that leverage a well described feature of human movement: Gaussian-shaped submovements in velocity profiles, to act as robotic surrogates for human inference and trajectory planning in a handover task. We evaluated both models based on how early in a handover movement the inference model can obtain accurate estimates of handover location and timing, and how similar model trajectories are to human receiver trajectories. Initial results using one participant dyad demonstrate that our inference model can accurately predict location and handover timing, while the trajectory planner can use these predictions to provide a human-like trajectory plan for the robot. This approach delivers promising performance while remaining grounded in physiologically meaningful Gaussian-shaped velocity profiles of human motion. 
    more » « less
  3. Control of reach-to-grasp movements for deft and robust interactions with objects requires rapid sensorimotor updating that enables online adjustments to changing external goals (e.g., perturbations or instability of objects we interact with). Rarely do we appreciate the remarkable coordination in reach-to-grasp, until control becomes impaired by neurological injuries such as stroke, neurodegenerative diseases, or even aging. Modeling online control of human reach-to-grasp movements is a challenging problem but fundamental to several domains, including behavioral and computational neuroscience, neurorehabilitation, neural prostheses, and robotics. Currently, there are no publicly available datasets that include online adjustment of reach-to-grasp movements to object perturbations. This work aims to advance modeling efforts of reach-to-grasp movements by making publicly available a large kinematic and EMG dataset of online adjustment of reach-to-grasp movements to instantaneous perturbations of object size and distance performed in immersive haptic-free virtual environment (hf-VE). The presented dataset is composed of a large number of perturbation types (10 for both object size and distance) applied at three different latencies after the start of the movement. 
    more » « less
  4. The COVID-19 pandemic has accelerated interest in virtual reality (VR) for education, entertainment, telerehabilitation, and skills training. As the frequency and duration of VR engagement increases—the number of people in the United States using VR at least once per month is forecasted to exceed 95 million—it is critical to understand how VR engagement influences brain and behavior. Here, we evaluate neurophysiological effects of sensory conflicts induced by VR engagement and posit an intriguing hypothesis: the brain processes VR as a unique “context” leading to the formation and maintenance of independent sensorimotor representations. We discuss known VR-induced sensorimotor adaptations to illustrate how VR might manifest as a context for learning and how technological and human factors might mediate the context-dependency of sensorimotor representations learned in VR. 
    more » « less
  5. This study was performed to investigate the validity of a real world version of the Trail Making Test (TMT) across age strata, compared to the current standard TMT which is delivered using a pen-paper protocol. We developed a real world version of the TMT, the Can-TMT, that involves the retrieval of food cans, with numeric or alphanumerical labels, from a shelf in ascending order. Eye tracking data was acquired during the Can-TMT to calculate task completion time and compared to that of the Paper-TMT. Results indicated a strong significant correlation between the real world and paper tasks for both TMTA and TMTB versions of the tasks, indicative of the validity of the real world task. Moreover, the two age groups exhibited significant differences on the TMTA and TMTB versions of both task modalities (paper and can), further supporting the validity of the real world task. This work will have a significant impact on our ability to infer skill or impairment with visual search, spatial reasoning, working memory, and motor proficiency during complex real-world tasks. Thus, we hope to fill a critical need for an exam with the resolution capable of determining deficits which subjective or reductionist assessments may otherwise miss. 
    more » « less
  6. null (Ed.)
    Technological advancements and increased access have prompted the adoption of head- mounted display based virtual reality (VR) for neuroscientific research, manual skill training, and neurological rehabilitation. Applications that focus on manual interaction within the virtual environment (VE), especially haptic-free VR, critically depend on virtual hand-object collision detection. Knowledge about how multisensory integration related to hand-object collisions affects perception-action dynamics and reach-to-grasp coordination is needed to enhance the immersiveness of interactive VR. Here, we explored whether and to what extent sensory substitution for haptic feedback of hand-object collision (visual, audio, or audiovisual) and collider size (size of spherical pointers representing the fingertips) influences reach-to-grasp kinematics. In Study 1, visual, auditory, or combined feedback were compared as sensory substitutes to indicate the successful grasp of a virtual object during reach-to-grasp actions. In Study 2, participants reached to grasp virtual objects using spherical colliders of different diameters to test if virtual collider size impacts reach-to-grasp. Our data indicate that collider size but not sensory feedback modality significantly affected the kinematics of grasping. Larger colliders led to a smaller size-normalized peak aperture. We discuss this finding in the context of a possible influence of spherical collider size on the perception of the virtual object’s size and hence effects on motor planning of reach-to-grasp. Critically, reach-to-grasp spatiotemporal coordination patterns were robust to manipulations of sensory feedback modality and spherical collider size, suggesting that the nervous system adjusted the reach (transport) component commensurately to the changes in the grasp (aperture) component. These results have important implications for research, commercial, industrial, and clinical applications of VR. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)
    Abstract Handedness has been associated with behavioral asymmetries between limbs that suggest specialized function of dominant and non-dominant hand. Whether patterns of muscle co-activation, representing muscle synergies, also differ between the limbs remains an open question. Previous investigations of proximal upper limb muscle synergies have reported little evidence of limb asymmetry; however, whether the same is true of the distal upper limb and hand remains unknown. This study compared forearm and hand muscle synergies between the dominant and non-dominant limb of left-handed and right-handed participants. Participants formed their hands into the postures of the American Sign Language (ASL) alphabet, while EMG was recorded from hand and forearm muscles. Muscle synergies were extracted for each limb individually by applying non-negative-matrix-factorization (NMF). Extracted synergies were compared between limbs for each individual, and between individuals to assess within and across participant differences. Results indicate no difference between the limbs for individuals, but differences in limb synergies at the population level. Left limb synergies were found to be more similar than right limb synergies across left- and right-handed individuals. Synergies of the left hand of left dominant individuals were found to have greater population level similarity than the other limbs tested. Results are interpreted with respect to known differences in the neuroanatomy and neurophysiology of proximal and distal upper limb motor control. Implications for skill training in sports requiring dexterous control of the hand are discussed. 
    more » « less