This paper proposes a method to generate feasible trajectories for robotic systems with predefined sequences of switched contacts. The proposed trajectory generation method relies on sampling-based methods, optimal control, and reach-ability analysis. In particular, the proposed method is able to quickly test whether a simplified model-based planner, such as the Time-to-Velocity-Reversal planner, provides a reachable contact location based on reachability analysis of the multi-body robot system. When the contact location is reachable, we generate a feasible trajectory to change the contact mode of the robotic system smoothly. To perform reachability analysis efficiently, we devise a method to compute forward and backward reachable sets based on element-wise optimization over a finite time horizon. Then, we compute robot trajectories by employing optimal control. The main contributions of this study are the following. Firstly, we guarantee whether planned contact locations via simplified models are feasible by the robot system. Secondly, we generate optimal trajectories subject to various constraints given a feasible contact sequence. Lastly, we improve the efficiency of computing reachable sets for a class of constrained nonlinear systems by incorporating bi-directional propagation (forward and backward). To validate our methods we perform numerical simulations applied to a humanoid robot walking.
more »
« less
Leveraging Submovements for Prediction and Trajectory Planning for Human-Robot Handover
The effectiveness of human-robot interactions critically depends on the success of computational efforts to emulate human inference of intent, anticipation of action, and coordination of movement. To this end, we developed two models that leverage a well described feature of human movement: Gaussian-shaped submovements in velocity profiles, to act as robotic surrogates for human inference and trajectory planning in a handover task. We evaluated both models based on how early in a handover movement the inference model can obtain accurate estimates of handover location and timing, and how similar model trajectories are to human receiver trajectories. Initial results using one participant dyad demonstrate that our inference model can accurately predict location and handover timing, while the trajectory planner can use these predictions to provide a human-like trajectory plan for the robot. This approach delivers promising performance while remaining grounded in physiologically meaningful Gaussian-shaped velocity profiles of human motion.
more »
« less
- PAR ID:
- 10357669
- Date Published:
- Journal Name:
- Proceedings of the 15th International Conference on PErvasive Technologies Related to Assistive Environments
- Page Range / eLocation ID:
- 247 to 253
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An important component for the effective collaboration of humans with robots is the compatibility of their movements, especially when humans physically collaborate with a robot partner. Following previous findings that humans interact more seamlessly with a robot that moves with humanlike or biological velocity profiles, this study examined whether humans can adapt to a robot that violates human signatures. The specific focus was on the role of extensive practice and realtime augmented feedback. Six groups of participants physically tracked a robot tracing an ellipse with profiles where velocity scaled with the curvature of the path in biological and nonbiological ways, while instructed to minimize the interaction force with the robot. Three of the 6 groups received real-time visual feedback about their force error. Results showed that with 3 daily practice sessions, when given feedback about their force errors, humans could decrease their interaction forces when the robot’s trajectory violated human-like velocity patterns. Conversely, when augmented feedback was not provided, there were no improvements despite this extensive practice. The biological profile showed no improvements, even with feedback, indicating that the (non-zero) force had already reached a floor level. These findings highlight the importance of biological robot trajectories and augmented feedback to guide humans to adapt to non-biological movements in physical human-robot interaction. These results have implications on various fields of robotics, such as surgical applications and collaborative robots for industry.more » « less
-
We present a framework to generate periodic trajectory references for a 3D under-actuated bipedal robot, using a linear inverted pendulum (LIP) based controller with adaptive neural regulation. We use the LIP template model to estimate the robot's center of mass (CoM) position and velocity at the end of the current step, and formulate a discrete controller that determines the next footstep location to achieve a desired walking profile. This controller is equipped on the frontal plane with a Neural-Network-based adaptive term that reduces the model mismatch between the template and physical robot that particularly affects the lateral motion. Then, the foot placement location computed for the LIP model is used to generate task space trajectories (CoM and swing foot trajectories) for the actual robot to realize stable walking. We use a fast, real-time QP-based inverse kinematics algorithm that produces joint references from the task space trajectories, which makes the formulation independent of the knowledge of the robot dynamics. Finally, we implemented and evaluated the proposed approach in simulation and hardware experiments with a Digit robot obtaining stable periodic locomotion for both cases.more » « less
-
This work challenges the common assumption in physical human-robot interaction (pHRI) that the movement intention of a human user can be simply modeled with dynamic equations relating forces to movements, regardless of the user. Studies in physical human-human interaction (pHHI) suggest that interaction forces carry sophisticated information that reveals motor skills and roles in the partnership and even promotes adaptation and motor learning. In this view, simple force-displacement equations often used in pHRI studies may not be sufficient. To test this, this work measured and analyzed the interaction forces (F) between two humans as the leader guided the blindfolded follower on a randomly chosen path. The actual trajectory of the follower was transformed to the velocity commands (V) that would allow a hypothetical robot follower to track the same trajectory. Then, possible analytical relationships between F and V were obtained using neural network training. Results suggest that while F helps predict V, the relationship is not straightforward, that seemingly irrelevant components of F may be important, that force-velocity relationships are unique to each human follower, and that human neural control of movement may affect the prediction of the movement intent. It is suggested that user-specific, stereotype-free controllers may more accurately decode human intent in pHRI.more » « less
-
Template models, such as the Bipedal Spring-Loaded Inverted Pendulum and the Virtual Pivot Point, have been widely used as low-dimensional representations of the complex dynamics in legged locomotion. Despite their ability to qualitatively match human walking characteristics like M-shaped ground reaction force (GRF) profiles, they often exhibit discrepancies when compared to experimental data, notably in overestimating vertical center of mass (CoM) displacement and underestimating gait event timings (touchdown/ liftoff). This paper hypothesizes that the constant leg stiffness of these models explains the majority of these discrepancies. The study systematically investigates the impact of stiffness variations on the fidelity of model fittings to human data, where an optimization framework is employed to identify optimal leg stiffness trajectories. The study also quantifies the effects of stiffness variations on salient characteristics of human walking (GRF profiles and gait event timing). The optimization framework was applied to 24 subjects walking at 40% to 145% preferred walking speed (PWS). The findings reveal that despite only modifying ground forces in one direction, variable leg stiffness models exhibited a >80% reduction in CoM error across both the B-SLIP and VPP models, while also improving prediction of human GRF profiles. However, the accuracy of gait event timing did not consistently show improvement across all conditions. The resulting stiffness profiles mimic walking characteristics of ankle push-off during double support and reduced CoM vaulting during single support.more » « less
An official website of the United States government

