Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Legacy brominated flame retardants, including polybrominated diphenyl ethers (PBDEs), have been classified as persistent organic pollutants and replaced with novel brominated flame retardants (NBFRs). The octanol–water partition coefficients (log KOW) of NBFRs have been computationally estimated, but the log KOW values provided by these methods can differ by 1 to 3 orders of magnitude. Given the importance of this parameter in fate and toxicity models, we indirectly measured the log KOW values of eight NBFRs by their capacity factor (k′) on a reversed-phase high-performance liquid chromatography (HPLC) C18 column by isocratic elution and compared these measured values with those estimated by nine computational models. Log KOW values were obtained for the NBFRs 1,2-bis(2,4,6-tribromophenoxy) ethane, pentabromobenzene, pentabromoethylbenzene, pentabromotoluene, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate, allyl 2,4,6-tribromophenylether, 2,3-dibromopropyl-2,4,6-tribromophenyl ether, and bis(2-ethylhexyl) tetrabromophthalate. A training set of phthalates, polychlorinated biphenyls, PBDEs, and halogenated benzenes were chosen to obtain the log k′–log KOW calibration for the NBFRs. The computational models KowWIN, XLogP3, EAS-E Suite, COSMOtherm, DirectML, and Abraham polyparameter linear free energy relationships all predicted the log KOW values of the calibration compounds to within 1 order of magnitude without significant bias. The median of these models predicted log KOW values for the calibration compounds that were close to those known in the literature with root mean square error (RMSE) = 0.224 and for the NBFRs that were close to those measured by HPLC (RMSE = 0.334). Environ Toxicol Chem 2024;43:2105–2114. © 2024 SETACmore » « less
-
Abstract The ice‐cover period in lakes is increasingly recognized for its distinct combination of physical and biological phenomena and ecological relevance. Knowledge gaps exist where research areas of hydrodynamics, biogeochemistry and biology intersect. For example, density‐driven circulation under ice coincides with an expansion of the anoxic zone, but abiotic and biotic controls on oxygen depletion have not been disentangled, and while heterotrophic microorganisms and migrating phytoplankton often thrive at the oxycline, the extent to which physical processes induce fluxes of heat and substrates that support under‐ice food webs is uncertain. Similarly, increased irradiance in spring can promote growth of motile phytoplankton or, if radiatively driven convection occurs, more nutritious diatoms, but links between functional trait selection, trophic transfer to zooplankton and fish, and the prevalence of microbial versus classical food webs in seasonally ice‐covered lakes remain unclear. Under‐ice processes cascade into and from the ice‐free season, and are relevant to annual cycling of energy and carbon through aquatic food webs. Understanding the coupling between state transitions and the reorganization of trophic hierarchies is essential for predicting complex ecosystem responses to climate change. In this interdisciplinary review we describe existing knowledge of physical processes in lakes in winter and the parallel developments in under‐ice biogeochemistry and ecology. We then illustrate interactions between these processes, identify extant knowledge gaps and present (novel) methods to address outstanding questions.more » « less
-
Free, publicly-accessible full text available December 31, 2025
-
Free, publicly-accessible full text available December 31, 2025
-
The insecticide and current use pesticide chlorpyrifos (CLP) is transported via global distillation to the Arctic where it may pose a threat to this ecosystem. CLP is readily detected in Arctic environmental compartments, but current research has not studied its partitioning between water and dissolved organic matter (DOM) nor the role of photochemistry in CLP's fate in aquatic systems. Here, the partition coefficients of CLP were quantified with various types of DOM isolated from the Arctic and an International Humic Substances Society (IHSS) reference material Suwannee River natural organic matter (SRNOM). While CLP readily partitions to DOM, CLP exhibits a significantly higher binding constant with Arctic lacustrine DOM relative to fluvial DOM or SRNOM. The experimental partitioning coefficients (KDOC) were compared to a calculated value estimated using poly parameter linear free energy relationship (pp-LFER) and was found to be in good agreement with SRNOM, but none of the Arctic DOMs. We found that Arctic KDOC values decrease with increasing SUVA254, but no correlations were observed for the other DOM compositional parameters. DOM also mediates the photodegradation of CLP, with stark differences in photo-kinetics using Arctic DOM isolated over time and space. This work highlights the chemo-diversity of Arctic DOM relative to IHSS reference materials and highlights the need for in-depth characterization of DOM that transcends the current paradigm based upon terrestrial and microbial precursors.more » « less
-
Abstract Many challenges remain before we can fully understand the multifaceted role that natural organic matter (NOM) plays in soil and aquatic systems. These challenges remain despite the considerable progress that has been made in understanding NOM’s properties and reactivity using the latest analytical techniques. For nearly 4 decades, the International Humic Substances Society (IHSS, which is a non-profit scientific society) has distributed standard substances that adhere to strict isolation protocols and reference materials that are collected in bulk and originate from clearly defined sites. These NOM standard and reference samples offer relatively uniform materials for designing experiments and developing new analytical methods. The protocols for isolating NOM, and humic and fulvic acid fractions of NOM utilize well-established preparative scale column chromatography and reverse osmosis methods. These standard and reference NOM samples are used by the international scientific community to study NOM across a range of disciplines from engineered to natural systems, thereby seeding the transfer of knowledge across research fields. Recently, powerful new analytical techniques used to characterize NOM have revealed complexities in its composition that transcend the “microbial” vs. “terrestrial” precursor paradigm. To continue to advance NOM research in the Anthropocene epoch, a workshop was convened to identify potential new sites for NOM samples that would encompass a range of sources and precursor materials and would be relevant for studying NOM’s role in mediating environmental and biogeochemical processes. We anticipate that expanding the portfolio of IHSS reference and standard NOM samples available to the research community will enable this diverse group of scientists and engineers to better understand the role that NOM plays globally under the influence of anthropogenic mediated changes.more » « less
An official website of the United States government
