skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1805656

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The utilization of alkali metal anodes is hindered by an inherent instability in organic electrolytes. Sodium is of growing interest due to its high natural abundance, but the carbonate electrolytes popular in lithium systems cannot form a stable solid electrolyte interphase (SEI) with a sodium electrode. Using half-cell and symmetric-cell analysis, we identify specific glyme (chain ether) electrolytes that produce thin, predominantly inorganic SEI at the sodium metal interface, and we study the effect of ethylene carbonate and fluoroethylene carbonate (FEC) additives on the SEI formed in these systems via X-ray photoelectron spectroscopy. Through in situ optical microscopy, we observe the onset and growth of sodium dendrites in these electrolytes. We determine that the SEI formed by glyme alone may not support extensive or extreme cycling conditions, but the addition of FEC provides a more robust SEI to facilitate numerous consistent sodium plating and stripping cycles. 
    more » « less