The effects of fluoroethylene carbonate (FEC) electrolyte additive on charged sodium ion electrode/electrolyte reactivity at elevated temperatures were investigated using accelerating rate calorimetry (ARC). The beneficial effect of FEC on cell lifetime was demonstrated using Na0.97Ca0.03[Mn0.39Fe0.31Ni0.22Zn0.08]O2(NCMFNZO)/hard carbon (HC) pouch cells first prior to ARC measurements. Electrodes from these pouch cells were utilized as sample materials and 1.0 M NaPF6in propylene carbonate (PC):ethyl methyl carbonate (EMC) (1:1 by vol.) was chosen as control electrolyte. Adding 2 wt% and 5 wt% FEC to the electrolyte does not significantly affect the reactivity of de-sodiated NCMFNZO compared to the control electrolyte. However, the addition of FEC obviously changed the reactivity between sodiated HC and electrolytes, especially by showing a suppression on the exothermal behavior between 160 °C and 230 °C. These results give a head to head comparison of the reactivity of FEC additive containing electrolytes with charged sodium ion electrode materials at elevated temperatures and show that the use of FEC at additive levels should not compromise the cell safety when extending cell lifetime.
more »
« less
Fluorinated ethylene carbonate as additive to glyme electrolytes for robust sodium solid electrolyte interface
The utilization of alkali metal anodes is hindered by an inherent instability in organic electrolytes. Sodium is of growing interest due to its high natural abundance, but the carbonate electrolytes popular in lithium systems cannot form a stable solid electrolyte interphase (SEI) with a sodium electrode. Using half-cell and symmetric-cell analysis, we identify specific glyme (chain ether) electrolytes that produce thin, predominantly inorganic SEI at the sodium metal interface, and we study the effect of ethylene carbonate and fluoroethylene carbonate (FEC) additives on the SEI formed in these systems via X-ray photoelectron spectroscopy. Through in situ optical microscopy, we observe the onset and growth of sodium dendrites in these electrolytes. We determine that the SEI formed by glyme alone may not support extensive or extreme cycling conditions, but the addition of FEC provides a more robust SEI to facilitate numerous consistent sodium plating and stripping cycles.
more »
« less
- Award ID(s):
- 1805656
- PAR ID:
- 10481658
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- Cell Reports Physical Science
- Volume:
- 4
- Issue:
- 4
- ISSN:
- 2666-3864
- Page Range / eLocation ID:
- 101356
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An investigation of alternative lithium salts, lithium tetrafluoroborate (LiBF 4 ), lithium difluoro(oxalato)borate (LiDFOB) and lithium hexafluorophosphate (LiPF 6 ), in novel ester-based (methyl acetate/fluoroethylene carbonate- MA/FEC or methyl propionate/fluoroethylene carbonate- MP/FEC) electrolyte formulations has been conducted in LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622)/graphite cells to improve low temperature cycling performance of lithium ion batteries at −20 °C. Improved low temperature performance was observed with all the lithium salts in MA/FEC electrolyte while comparable room temperature (25 °C) capacities were observed with LiPF 6 salt only. Detailed ex-situ analysis of surface films generated with LiBF 4 , LiDFOB and LiPF 6 in ester-based electrolytes reveals that the solid electrolyte interphase (SEI) is predominately composed of lithium salt decompaction products and addition of 10% FEC (by volume%) may not be sufficient at forming a protective SEI.more » « less
-
Carbonate-based electrolytes are widely used in Li-ion batteries but are limited by a small operating temperature window and poor cycling with silicon-containing graphitic anodes. The lack of non-carbonate electrolyte alternatives such as ether-based electrolytes is due to undesired solvent co-intercalation that occurs with graphitic anodes. Here, we show that fluoroethers are the first class of ether solvents to intrinsically support reversible lithium-ion intercalation into graphite without solvent co-intercalation at conventional salt concentrations. In full cells using a graphite anode, they enable 10-fold higher energy densities compared to conventional ethers, and better thermal stability over carbonate electrolytes (operation up to 60 °C) by producing a robust solvent-derived solid electrolyte interphase (SEI). As single-solvent–single-salt electrolytes, they remarkably outperform carbonate electrolytes with fluoroethylene carbonate (FEC) and vinylene carbonate (VC) additives when cycled with graphite–silicon composite anodes. Our molecular design strategy opens a new class of electrolytes that can enable next generation Li-ion batteries with higher energy density and a wider working temperature window.more » « less
-
null (Ed.)Sodium metal battery (SMB, NMB) anodes can become dendritic due to an electrochemically unstable native Na-based solid electrolyte interphase (SEI). Herein Li-ion activated tin sulfide graphene nanocomposite membrane (A-SnS–G) is employed as an artificial SEI layer, allowing cyclability of record-thin 100 μm Na metal foils. The thin Na metal is prepared by a self-designed metallurgical rolling protocol. A-SnS–G is initially placed onto the polypropylene (PP) separator but becomes in situ transferred onto the Na metal surface. Symmetric metal cells protected by A-SnS–G achieve low-overpotential extended high-rate cycling in a standard carbonate electrolyte (EC : DEC = 1 : 1, 5% FEC). Accumulated capacity of 1000 mA h cm −2 is obtained after 500 cycles at 4 mA cm −2 , with accumulated capacity-to-foil capacity (A/F) ratio of 90.9. This is among the most favorable cycle life, accumulated capacity, and anode utilization combinations reported. Protection by non-activated SnS–G membrane yields significantly worse cycling, albeit still superior to the baseline unprotected sodium. Post-mortem and dedicated light optical analysis indicate that metal swelling, dendrite growth and dead metal formation is extensive for the unprotected sample, but is suppressed with A-SnS–G. Per XPS, post-100 cycles near-surface structure of A-SnS–G is rich in metallic Sn alloys and inorganic carbonate salts. Even after 300 cycles, Li-based SEI components ROCO 2 -Li, Li 2 CO 3 and LiF are detected with A-SnS–G. As a proof of principle, an SMB with a high mass loading (6 mg cm −2 ) NVP cathode and a A-SnS–G protected anode delivered extended cyclability, achieving 74 mA h g −1 after 400 cycles at 0.4C.more » « less
-
Abstract Realization of practical sodium metal batteries (SMBs) is hindered due to lack of compatible electrolyte components, dendrite propagation, and poor understanding of anodic interphasial chemistries. Chemically robust liquid electrolytes that facilitate both favorable sodium metal deposition and a stable solid‐electrolyte interphase (SEI) are ideal to enable sodium metal and anode‐free cells. Herein we present advanced characterization of a novel fluorine‐free electrolyte utilizing the [HCB 11 H 11 ] 1− anion. Symmetrical Na cells operated with this electrolyte exhibit a remarkably low overpotential of 0.032 V at a current density of 2.0 mA cm −2 and a high coulombic efficiency of 99.5 % in half‐cell configurations. Surface characterization of electrodes post‐operation reveals the absence of dendritic sodium nucleation and a surprisingly stable fluorine‐free SEI. Furthermore, weak ion‐pairing is identified as key towards the successful development of fluorine‐free sodium electrolytes.more » « less
An official website of the United States government

