skip to main content

Search for: All records

Award ID contains: 1806290

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We shed some light on the reason why the accidental flatness constraint appears in certain limits of the amplitudes of covariant loop quantum gravity. We show why this constraint is harmless, by displaying how analogous accidental constraints appear in transition amplitudes of simple systems, when certain limits are considered. 
    more » « less
  2. Abstract The authors previously introduced a diffeomorphism-invariant definition of a homogeneous and isotropic sector of loop quantum gravity (LQG), along with a program to embed loop quantum cosmology (LQC) into it. The present paper works out that program in detail for the simpler, but still physically non-trivial, case where the target of the embedding is the homogeneous, but not isotropic, Bianchi I model. The diffeomorphism-invariant conditions imposing homogeneity and isotropy in the full theory reduce to conditions imposing isotropy on an already homogeneous Bianchi I spacetime. The reduced conditions are invariant under the residual diffeomorphisms still allowed after gauge fixing the Bianchi I model. We show that there is a unique embedding of the quantum isotropic model into the homogeneous quantum Bianchi I model that (a) is covariant with respect to the actions of such residual diffeomorphisms, and (b) intertwines both the (signed) volume operator and at least one directional Hubble rate. That embedding also intertwines all other operators of interest in the respective loop quantum cosmological models, including their Hamiltonian constraints. It thus establishes a precise equivalence between dynamics in the isotropic sector of the Bianchi I model and the quantized isotropic model, and not just their kinematics. We also discuss the adjoint relationship between the embedding map defined here and a projection map previously defined by Ashtekar and Wilson-Ewing. Finally, we highlight certain features that simplify this reduced embedding problem, but which may not have direct analogues in the embedding of homogeneous and isotropic LQC into full LQG. 
    more » « less
  3. Abstract We show that, when an approximation used in this prior work is removed, the resulting improved calculation yields an alternative derivation, in the particular case studied, of the accidental curvature constraint of Hellmann and Kaminski. The result is at the same time extended to apply to almost all non-degenerate Regge-like boundary data and a broad class of face amplitudes. This resolves a tension in the literature. 
    more » « less