skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum isotropy and the reduction of dynamics in Bianchi I
Abstract The authors previously introduced a diffeomorphism-invariant definition of a homogeneous and isotropic sector of loop quantum gravity (LQG), along with a program to embed loop quantum cosmology (LQC) into it. The present paper works out that program in detail for the simpler, but still physically non-trivial, case where the target of the embedding is the homogeneous, but not isotropic, Bianchi I model. The diffeomorphism-invariant conditions imposing homogeneity and isotropy in the full theory reduce to conditions imposing isotropy on an already homogeneous Bianchi I spacetime. The reduced conditions are invariant under the residual diffeomorphisms still allowed after gauge fixing the Bianchi I model. We show that there is a unique embedding of the quantum isotropic model into the homogeneous quantum Bianchi I model that (a) is covariant with respect to the actions of such residual diffeomorphisms, and (b) intertwines both the (signed) volume operator and at least one directional Hubble rate. That embedding also intertwines all other operators of interest in the respective loop quantum cosmological models, including their Hamiltonian constraints. It thus establishes a precise equivalence between dynamics in the isotropic sector of the Bianchi I model and the quantized isotropic model, and not just their kinematics. We also discuss the adjoint relationship between the embedding map defined here and a projection map previously defined by Ashtekar and Wilson-Ewing. Finally, we highlight certain features that simplify this reduced embedding problem, but which may not have direct analogues in the embedding of homogeneous and isotropic LQC into full LQG.  more » « less
Award ID(s):
1806290 2110234
PAR ID:
10327472
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
38
Issue:
24
ISSN:
0264-9381
Page Range / eLocation ID:
245001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We initiate the study of Schrödinger operators with ergodic potentials defined over circle map dynamics, in particular over circle diffeomorphisms. For analytic circle diffeomorphisms and a set of rotation numbers satisfying Yoccoz’s $${{\mathcal{H}}}$$ arithmetic condition, we discuss an extension of Avila’s global theory. We also give an abstract version and a short proof of a sharp Gordon-type theorem on the absence of eigenvalues for general potentials with repetitions. Coupled with the dynamical analysis, we obtain that, for every $$C^{1+BV}$$ circle diffeomorphism, with a super Liouville rotation number and an invariant measure $$\mu $$, and for $$\mu $$-almost all $$x\in{{\mathbb{T}}}^1$$, the corresponding Schrödinger operator has purely continuous spectrum for every Hölder continuous potential $$V$$. 
    more » « less
  2. Abstract We explore new connections between the dynamics of conservative partially hyperbolic systems and the geometric measure-theoretic properties of their invariant foliations. Our methods are applied to two main classes of volume-preserving diffeomorphisms: fibered partially hyperbolic diffeomorphisms and center-fixing partially hyperbolic systems. When the center is one-dimensional, assuming the diffeomorphism is accessible, we prove that the disintegration of the volume measure along the center foliation is either atomic or Lebesgue. Moreover, the latter case is rigid in dimension three (this does not require accessibility): the center foliation is actually smooth and the diffeomorphism is smoothly conjugate to an explicit rigid model. A partial extension to fibered partially hyperbolic systems with compact fibers of any dimension is also obtained. A common feature of these classes of diffeomorphisms is that the center leaves either are compact or can be made compact by taking an appropriate dynamically defined quotient. For volume-preserving partially hyperbolic diffeomorphisms whose center foliation is absolutely continuous, if the generic center leaf is a circle, then every center leaf is compact. 
    more » « less
  3. We introduce a notion of residual diffeomorphism covariance in quantum Kantowski–Sachs (KS) describing the interior of a Schwarzschild black hole. We solve for the family of Hamiltonian constraint operators satisfying the associated covariance condition, as well as parity invariance, preservation of the Bohr Hilbert space of the Loop Quantum KS and a correct (naïve) classical limit. We further explore the imposition of minimality for the number of terms and compare the solution with those of other Hamiltonian constraints proposed for the Loop Quantum KS in the literature. In particular, we discuss a lapse that was recently commonly chosen due to the resulting decoupling of the evolution of the two degrees of freedom and the exact solubility of the model. We show that such a choice of lapse can indeed be quantized as an operator that is densely defined on the Bohr Hilbert space and that any such operator must include an infinite number of shift operators. 
    more » « less
  4. Abstract We show that if a partially hyperbolic diffeomorphism of a Seifert manifold induces a map in the base which has a pseudo-Anosov component then it cannot be dynamically coherent. This extends [C. Bonatti, A. Gogolev, A. Hammerlindl and R. Potrie. Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence. Geom. Topol. , to appear] to the whole isotopy class. We relate the techniques to the study of certain partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds performed in [T. Barthelmé, S. Fenley, S. Frankel and R. Potrie. Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part I: The dynamically coherent case. Preprint , 2019, arXiv:1908.06227; Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part II: Branching foliations. Preprint , 2020, arXiv: 2008.04871]. The appendix reviews some consequences of the Nielsen–Thurston classification of surface homeomorphisms for the dynamics of lifts of such maps to the universal cover. 
    more » « less
  5. Abstract The unification of general relativity and quantum theory is one of the fascinating problems of modern physics. One leading solution is Loop Quantum Gravity (LQG). Simulating LQG may be important for providing predictions which can then be tested experimentally. However, such complex quantum simulations cannot run efficiently on classical computers, and quantum computers or simulators are needed. Here, we experimentally demonstrate quantum simulations of spinfoam amplitudes of LQG on an integrated photonics quantum processor. We simulate a basic transition of LQG and show that the derived spinfoam vertex amplitude falls within 4% error with respect to the theoretical prediction, despite experimental imperfections. We also discuss how to generalize the simulation for more complex transitions, in realistic experimental conditions, which will eventually lead to a quantum advantage demonstration as well as expand the toolbox to investigate LQG. 
    more » « less