The space-borne gravitational wave interferometer, Laser Interferometer Space Antenna, is expected to detect signals from numerous binary white dwarfs. At small orbital separation, rapid rotation and large tidal bulges may allow for the stellar internal structure to be probed through such observations. Finite-size effects are encoded in quantities like the moment of inertia (I), tidal Love number (Love), and quadrupole moment (Q). The universal relations among them (I–Love–Q relations) can be used to reduce the number of parameters in the gravitational-wave templates. We here study I–Love–Q relations for more realistic white dwarf models than used in previous studies. In particular, we extend previous works by including (i) differential rotation and (ii) internal temperature profiles taken from detailed stellar evolution calculations. We use the publicly available stellar evolution code mesa to generate cooling models of both low- and high-mass white dwarfs. We show that differential rotation causes the I–Q relation (and similarly the Love–Q relation) to deviate from that of constant rotation. We also find that the introduction of finite temperatures causes the white dwarf to move along the zero-temperature mass sequence of I–Q values, moving towards values that suggest a lower mass. We further find that after only amore »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
Free, publicly-accessible full text available April 1, 2023
-
Free, publicly-accessible full text available March 1, 2023