White dwarf binaries with orbital periods below 1 h will be the most numerous sources for the space-based gravitational wave detector Laser Interferometer Space Antenna (LISA). Based on thousands of individually resolved systems, we will be able to constrain binary evolution and provide a new map of the Milky Way and its close surroundings. In this paper we predict the main properties of populations of different types of detached white dwarf binaries detected by LISA over time. For the first time, we combine a high-resolution cosmological simulation of a Milky Way-mass galaxy (taken from the FIRE project) with a binary population synthesis model for low- and intermediate-mass stars. Our Galaxy model therefore provides a cosmologically realistic star formation and metallicity history for the Galaxy and naturally produces its different components such as the thin and thick disc, the bulge, the stellar halo, and satellite galaxies and streams. Thanks to the simulation, we show how different Galactic components contribute differently to the gravitational wave signal, mostly due to their typical age and distance distributions. We find that the dominant LISA sources will be He–He double white dwarfs (DWDs) and He–CO DWDs with important contributions from the thick disc and bulge. The resulting sky map ofmore »
The space-borne gravitational wave interferometer, Laser Interferometer Space Antenna, is expected to detect signals from numerous binary white dwarfs. At small orbital separation, rapid rotation and large tidal bulges may allow for the stellar internal structure to be probed through such observations. Finite-size effects are encoded in quantities like the moment of inertia (I), tidal Love number (Love), and quadrupole moment (Q). The universal relations among them (I–Love–Q relations) can be used to reduce the number of parameters in the gravitational-wave templates. We here study I–Love–Q relations for more realistic white dwarf models than used in previous studies. In particular, we extend previous works by including (i) differential rotation and (ii) internal temperature profiles taken from detailed stellar evolution calculations. We use the publicly available stellar evolution code mesa to generate cooling models of both low- and high-mass white dwarfs. We show that differential rotation causes the I–Q relation (and similarly the Love–Q relation) to deviate from that of constant rotation. We also find that the introduction of finite temperatures causes the white dwarf to move along the zero-temperature mass sequence of I–Q values, moving towards values that suggest a lower mass. We further find that after only a more »
- Award ID(s):
- 1806776
- Publication Date:
- NSF-PAR ID:
- 10130060
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 492
- Issue:
- 1
- Page Range or eLocation-ID:
- p. 978-992
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT Compact white dwarf (WD) binaries are important sources for space-based gravitational-wave (GW) observatories, and an increasing number of them are being identified by surveys like Extremely Low Mass (ELM) and Zwicky Transient Facility (ZTF). We study the effects of non-linear dynamical tides in such binaries. We focus on the global three-mode parametric instability and show that it has a much lower threshold energy than the local wave-breaking condition studied previously. By integrating networks of coupled modes, we calculate the tidal dissipation rate as a function of orbital period. We construct phenomenological models that match these numerical results and use them to evaluate the spin and luminosity evolution of a WD binary. While in linear theory the WD’s spin frequency can lock to the orbital frequency, we find that such a lock cannot be maintained when non-linear effects are taken into account. Instead, as the orbit decays, the spin and orbit go in and out of synchronization. Each time they go out of synchronization, there is a brief but significant dip in the tidal heating rate. While most WDs in compact binaries should have luminosities that are similar to previous traveling-wave estimates, a few per cent should be about 10 times dimmermore »
-
Context. The collection of high-quality photometric data by space telescopes, such as the completed Kepler mission and the ongoing TESS program, is revolutionizing the area of white-dwarf asteroseismology. Among the different kinds of pulsating white dwarfs, there are those that have He-rich atmospheres, and they are called DBVs or V777 Her variable stars. The archetype of these pulsating white dwarfs, GD 358, is the focus of the present paper. Aims. We report a thorough asteroseismological analysis of the DBV star GD 358 (TIC 219074038) based on new high-precision photometric data gathered by the TESS space mission combined with data taken from the Earth. Methods. We reduced TESS observations of the DBV star GD 358 and performed a detailed asteroseismological analysis using fully evolutionary DB white-dwarf models computed accounting for the complete prior evolution of their progenitors. We assessed the mass of this star by comparing the measured mean period separation with the theoretical averaged period spacings of the models, and we used the observed individual periods to look for a seismological stellar model. We detected potential frequency multiplets for GD 358, which we used to identify the harmonic degree ( ℓ ) of the pulsation modes and rotation period. Results.more »
-
Context. Before reaching their quiescent terminal white-dwarf cooling branch, some low-mass helium-core white dwarf stellar models experience a number of nuclear flashes which greatly reduce their hydrogen envelopes. Just before the occurrence of each flash, stable hydrogen burning may be able to drive global pulsations that could be relevant in shedding some light on the internal structure of these stars through asteroseismology, similarly to what occurs with other classes of pulsating white dwarfs. Aims. We present a pulsational stability analysis applied to low-mass helium-core stars on their early white-dwarf cooling branches going through CNO flashes in order to study the possibility that the ε mechanism is able to excite gravity-mode pulsations. We assess the ranges of unstable periods and the corresponding instability domain in the log g − T eff plane. Methods. We carried out a nonadiabatic pulsation analysis for low-mass helium-core white-dwarf models with stellar masses between 0.2025 and 0.3630 M ⊙ going through CNO flashes during their early cooling phases. Results. We found that the ε mechanism due to stable hydrogen burning can excite low-order ( ℓ = 1, 2) gravity modes with periods between ∼80 and 500 s for stars with 0.2025 ≲ M ⋆ / M ⊙ ≲ 0.3630 locatedmore »
-
ABSTRACT Mergers of binaries comprising compact objects can give rise to explosive transient events, heralding the birth of exotic objects that cannot be formed through single-star evolution. Using a large number of direct N-body simulations, we explore the possibility that a white dwarf (WD) is dynamically driven to tidal disruption by a stellar-mass black hole (BH) as a consequence of the joint effects of gravitational wave (GW) emission and Lidov–Kozai oscillations imposed by the tidal field of an outer tertiary companion orbiting the inner BH–WD binary. We explore the sensitivity of our results to the distributions of natal kick velocities imparted to the BH and WD upon formation, adiabatic mass loss, semimajor axes and eccentricities of the triples, and stellar-mass ratios. We find rates of WD–tidal disruption events (TDEs) in the range 1.2 × 10−3 − 1.4 Gpc−3 yr−1 for z ≤ 0.1, rarer than stellar TDEs in triples by a factor of ∼3–30. The uncertainty in the TDE rates may be greatly reduced in the future using GW observations of Galactic binaries and triples with LISA. WD–TDEs may give rise to high-energy X-ray or gamma-ray transients of duration similar to long gamma-ray bursts but lacking the signatures of a core-collapse supernova,more »