skip to main content

Title: HAWC Study of the Ultra-high-energy Spectrum of MGRO J1908+06
Abstract We report TeV gamma-ray observations of the ultra-high-energy source MGRO J1908+06 using data from the High Altitude Water Cherenkov Observatory. This source is one of the highest-energy known gamma-ray sources, with emission extending past 200 TeV. Modeling suggests that the bulk of the TeV gamma-ray emission is leptonic in nature, driven by the energetic radio-faint pulsar PSR J1907+0602. Depending on what assumptions are included in the model, a hadronic component may also be allowed. Using the results of the modeling, we discuss implications for detection prospects by multi-messenger campaigns.  more » « less
Award ID(s):
2110809 1806854 1912708 1806408 2111531 1914549 2209103
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Superluminous supernovae (SLSNe) are a rare class of stellar explosions with luminosities ∼ 10–100 times greater than ordinary core-collapse supernovae. One popular model to explain the enhanced optical output of hydrogen-poor (Type I) SLSNe invokes energy injection from a rapidly spinning magnetar. A prediction in this case is that high-energy gamma-rays, generated in the wind nebula of the magnetar, could escape through the expanding supernova ejecta at late times (months or more after optical peak). This paper presents a search for gamma-ray emission in the broad energy band from 100 MeV to 30 TeV from two Type I SLSNe, SN2015bn, and SN2017egm, using observations from Fermi-LAT and VERITAS. Although no gamma-ray emission was detected from either source, the derived upper limits approach the putative magnetar’s spin-down luminosity. Prospects are explored for detecting very-high-energy (VHE; 100 GeV–100 TeV) emission from SLSNe-I with existing and planned facilities such as VERITAS and CTA.

    more » « less
  2. Abstract The majority of astrophysical neutrinos have undetermined origins. The IceCube Neutrino Observatory has observed astrophysical neutrinos but has not yet identified their sources. Blazars are promising source candidates, but previous searches for neutrino emission from populations of blazars detected in ≳GeV gamma rays have not observed any significant neutrino excess. Recent findings in multimessenger astronomy indicate that high-energy photons, coproduced with high-energy neutrinos, are likely to be absorbed and reemitted at lower energies. Thus, lower-energy photons may be better indicators of TeV–PeV neutrino production. This paper presents the first time-integrated stacking search for astrophysical neutrino emission from MeV-detected blazars in the first Fermi Large Area Telescope low energy (1FLE) catalog using ten years of IceCube muon–neutrino data. The results of this analysis are found to be consistent with a background-only hypothesis. Assuming an E −2 neutrino spectrum and proportionality between the blazars MeV gamma-ray fluxes and TeV–PeV neutrino flux, the upper limit on the 1FLE blazar energy-scaled neutrino flux is determined to be 1.64 × 10 −12 TeV cm −2 s −1 at 90% confidence level. This upper limit is approximately 1% of IceCube’s diffuse muon–neutrino flux measurement. 
    more » « less
  3. Abstract Transient sources such as supernovae (SNe) and tidal disruption events are candidates of high-energy neutrino sources. However, SNe commonly occur in the universe and a chance coincidence of their detection with a neutrino signal cannot be avoided, which may lead to a challenge of claiming their association with neutrino emission. In order to overcome this difficulty, we propose a search for ∼10–100 TeV multiple neutrino events within a timescale of ∼30 days coming from the same direction, called neutrino multiplets. We show that demanding multiplet detection by a ∼1 km 3 neutrino telescope limits the distances of detectable neutrino sources, which enables us to identify source counterparts by multiwavelength observations owing to the substantially reduced rate of the chance coincidence detection of transients. We apply our results by constructing a feasible strategy for optical follow-up observations and demonstrate that wide-field optical telescopes with a ≳4 m dish should be capable of identifying a transient associated with a neutrino multiplet. We also present the resultant sensitivity of multiplet neutrino detection as a function of the released energy of neutrinos and burst rate density. A model of neutrino transient sources with an emission energy greater than a few × 10 51 erg and a burst rate rarer than a few ×10 −8 Mpc −3 yr −1 is constrained by the null detection of multiplets by a ∼1 km 3 scale neutrino telescope. This already disfavors the canonical high-luminosity gamma-ray bursts and jetted tidal disruption events as major sources in the TeV-energy neutrino sky. 
    more » « less
  4. Abstract

    We examined the X-ray and radio spatial structure at the eastern ear of the W 50/SS 433 system to clarify a characteristic feature of the termination region of the SS 433 jet, and found that a hot spot ahead of the filament structure, which is considered to be a terminal shock of the SS 433 eastern jet, is clearly different from a single point source. The detailed spatial structure of the X-ray emission is finely resolved by Chandra observations, showing that there are two sources. By comparing the point-spread function of Chandra with the radial profiles of the two sources, the northern one is clearly more extended than a point source while the other seems marginally extended. Since there are no point sources nearby, the northern hot spot is likely a localized diffuse source. The northern hot spot spatially corresponds to the peak of the radio emission. Its spatial correlation is confirmed by an X-ray image using XMM-Newton. The X-ray spectra of the two sources are reproduced by a single absorbed power-law but the column density of the northern part is larger by a factor of ∼3. When a radiation model comprising synchrotron emission and inverse Compton emission is applied to the spectral energy distribution of the northern hot spot, the emission from this spot can be explained by the radiation from an electron population accelerated up to 30 TeV in a magnetic field strength of B ≲ 50 μG. This model also agrees with the radio and X-ray data, as well as the upper limit of gamma-ray emission obtained by the Fermi satellite.

    more » « less
  5. Abstract Gamma-ray bursts (GRBs) have long been considered a possible source of high-energy neutrinos. While no correlations have yet been detected between high-energy neutrinos and GRBs, the recent observation of GRB 221009A—the brightest GRB observed by Fermi-GBM to date and the first one to be observed above an energy of 10 TeV—provides a unique opportunity to test for hadronic emission. In this paper, we leverage the wide energy range of the IceCube Neutrino Observatory to search for neutrinos from GRB 221009A. We find no significant deviation from background expectation across event samples ranging from MeV to PeV energies, placing stringent upper limits on the neutrino emission from this source. 
    more » « less