skip to main content


Search for: All records

Award ID contains: 1807225

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kinetic analysis of surface reactions at the single molecule level is important for understanding the influence of the substrate and solvent on reaction dynamics and mechanisms, but it is difficult with current methods. Here we present a stochastic kinetic analysis of the oxygenation of cobalt octaethylporphyrin (CoOEP) at the solution/solid interface by monitoring fluctuations from equilibrium using scanning tunneling microscopy (STM) imaging. Image movies were used to monitor the oxygenated and deoxygenated state dwell times. The rate constants for CoOEP oxygenation are ka = 4.9×10-6 s-1∙torr-1 and kd = 0.018 s-1. This is the first use of stochastic dwell time analysis with STM to study a chemical reaction and the results suggest that it has great potential for application to a wide range of surface reactions. Expanding these stochastic studies to further systems is key to unlocking kinetic information for surface confined reactions at the molecular level -- especially at the solution/solid interface. 
    more » « less
  2. Abstract: : Metalloporphyrins have been shown to bind axial ligands in a variety of environments including the vacuum/solid and solution/solid interfaces. Understanding the dynamics of such interactions is a desideratum for the design and implementation of next generation molecular devices which draw inspiration from biological systems to accomplish diverse tasks such as molecular sensing, electron transport, and catalysis to name a few. In this article, we review the current literature of axial ligand coordination to surface-supported porphyrin receptors. We will focus on the coordination process as monitored by scanning tunneling microscopy (STM) that can yield qualitative and quantitative information on the dynamics and binding affinity at the single molecule level. In particular, we will address the role of the substrate and intermolecular interactions in influencing cooperative effects (positive or negative) in the binding affinity of adjacent molecules based on experimental evidence and theoretical calculations. 
    more » « less
  3. null (Ed.)