skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Single-Molecule Kinetic Analysis of Oxygenation of Co(II) Porphyrin at the Solution/Solid Interface
Kinetic analysis of surface reactions at the single molecule level is important for understanding the influence of the substrate and solvent on reaction dynamics and mechanisms, but it is difficult with current methods. Here we present a stochastic kinetic analysis of the oxygenation of cobalt octaethylporphyrin (CoOEP) at the solution/solid interface by monitoring fluctuations from equilibrium using scanning tunneling microscopy (STM) imaging. Image movies were used to monitor the oxygenated and deoxygenated state dwell times. The rate constants for CoOEP oxygenation are ka = 4.9×10-6 s-1∙torr-1 and kd = 0.018 s-1. This is the first use of stochastic dwell time analysis with STM to study a chemical reaction and the results suggest that it has great potential for application to a wide range of surface reactions. Expanding these stochastic studies to further systems is key to unlocking kinetic information for surface confined reactions at the molecular level -- especially at the solution/solid interface.  more » « less
Award ID(s):
1807225
PAR ID:
10329754
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry Letters
ISSN:
1948-7185
Page Range / eLocation ID:
4918 to 4923
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present a quantitative study comparing the binding of 4-methoxypyridine, MeOPy, ligand to Co( ii )octaethylporphyrin, CoOEP, at the phenyloctane/HOPG interface and in toluene solution. Scanning tunneling microscopy (STM) was used to study the ligand binding to the porphyrin receptors adsorbed on graphite. Electronic spectroscopy was employed for examining this process in fluid solution. The on surface coordination reaction was completely reversible and followed a simple Langmuir adsorption isotherm. Ligand affinities (or Δ G ) for the binding processes in the two different chemical environments were determined from the respective equilibrium constants. The free energy value of −13.0 ± 0.3 kJ mol −1 for the ligation reaction of MeOPy to CoOEP at the solution/HOPG interface is less negative than the Δ G for cobalt porphyrin complexed to the ligand in solution, −16.8 ± 0.2 kJ mol −1 . This result indicates that the MeOPy–CoOEP complex is more stable in solution than on the surface. Additional thermodynamic values for the formation of the surface ligated species (Δ H c = −50 kJ mol −1 and Δ S c = −120 J mol −1 ) were extracted from temperature dependent STM measurements. Density functional computational methods were also employed to explore the energetics of both the solution and surface reactions. At high concentrations of MeOPy the monolayer was observed to be stripped from the surface. Computational results indicate that this is not because of a reduction in adsorption energy of the MeOPy–CoOEP complex. Nearest neighbor analysis of the MeOPy–CoOEP in the STM images revealed positive cooperative ligand binding behavior. Our studies bring new insights to the general principles of affinity and cooperativity in the ligand–receptor interactions at the solution/solid interface. Future applications of STM will pave the way for new strategies designing highly functional multisite receptor systems for sensing, catalysis, and pharmacological applications. 
    more » « less
  2. STM can effectively probe single porphyrin receptor-ligand binding events at the solution/solid interface and provide both qualitative and quantitative information about molecule binding affinity, reaction kinetics and thermodynamics. 
    more » « less
  3. Understanding the interactions between molecules on surfaces is crucial for advancing technologies in sensing, catalysis, and energy harvesting. In this study we explore the complex surface chemistry resulting from the interaction of Co(II)octaethylporphyrin (CoOEP) and iodine, I2, both in solution and at the phenyloctane/HOPG interface. In pursuit of this goal, we report results from electrochemistry, NMR and UV-Vis spectroscopy, X-ray crystallography, scanning tunneling microscopy (STM), and density functional theory (DFT). Both spectroscopic methods of analysis confirmed that at and above the stoichiometric ratio of one CoOEP to one I2 the reaction product was metal centered CoIII(OEP)I. X-ray crystallography verified that a single iodine is bonded to each cobalt ion in the triclinic, P-1 system. The surface chemistry of CoOEP and I2 is complicated and remarkably dependent on the iodine concentration. STM images of CoOEP and I2 in phenyloctane on highly oriented pyrolytic graphite (HOPG) at low halogen concentrations (1:<2 Co:I ratios) presented random individual Co(OEP)I molecules weakly adsorbed onto a hexagonal (HEX) CoOEP monolayer. Images of 1:2 Co:I ratio solutions, showed phase segregated HEX CoOEP and pseudo-rectangular (REC) Co(OEP)I incorporating one solvent molecule per Co(OEP)I. The REC structure formed in long parallel rows with the number of rows increasing with increasing solution I2. In this case, the presence of CoOEP on the surface was attributed to the spontaneous reduction of Co(OEP)I by the graphite substrate. DFT calculations indicate that the REC Co(OEP)I:PhO form is energetically more stable than the HEX form of Co(OEP)I on HOPG. Experimental STM images and DFT calculated adsorption energies and STM images support our interpretation of the observed structures. 
    more » « less
  4. In heterogeneously catalyzed oxidation reactions on metal surfaces, advantageous oxygenaceous species proffer lower barrier reaction pathways. In order to utilize such reactions better, it is essential to understand what species are present, how they are formed, and under what conditions they are available for reaction. Oxides, adsorbed oxygen, and subsurface oxygen each form on Rh(111) surfaces and thus provide the opportunity to distinguish the contributions of each species to the overall reactivity. In an effort to elucidate relevant reaction sites on catalytically active rhodium surfaces, a combination of scanning tunneling microscopy (STM) and temperature-programmed desorption (TPD) showed that when subsurface oxygen is present, CO was readily oxidized at the interface between the metallic and oxidic phases at relatively modest temperatures. 
    more » « less
  5. The growing global plastic waste challenge requires development of new plastic waste management strategies, such as pyrolysis, that will help to enable a circular plastic economy. Developing optimized, scalable pyrolysis reactors capable of maximizing the yield of desired products requires a fundamental understanding of plastic pyrolysis chemistry. Accordingly, the intrinsic reaction kinetics of polypropylene pyrolysis have been evaluated by the method of pulse-heated analysis of solid reactions (PHASR), which enables time-resolved measurement of pyrolysis kinetics at high temperature absent heat and mass transfer limitations on the millisecond scale. Polypropylene pyrolysis product evolution curves were generated at 525°C–625°C, and the overall reaction kinetics were described by a lumped first-order model with an activation energy of 242.0 ± 2.9 kJ mol−1 and a pre-exponential factor of 35.5 ± 0.6 ln(s−1). Additionally, the production of solid residues formed during polypropylene pyrolysis was investigated, revealing a secondary kinetic regime. 
    more » « less