skip to main content


Search for: All records

Award ID contains: 1807255

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Crystals of poly(ethylene glycol) grown in thin films of the room temperature ionic liquid (IL) 1‐ethyl‐3‐methylimidazolium ethyl sulfate were examined by electron microscopy as a first step toward exploiting nonvolatile liquids for nanoscale imaging of solvated/dissolved polymeric materials. The crystals were generated by cooling supported (over surfaces of varied polarity) and freestanding solution films to room temperature. This “open,” that is, without liquid cell, microscopy was performed on unstained, as‐grown crystals in the presence of the IL. A variety of nearly two‐dimensional crystal morphologies were observed, including rods, fibers, spherulites, compact faceted single crystals, and interconnected networks, with characteristic sizes ranging from tens of nanometers to tens of microns. Electron diffraction patterns for the rods and fibers revealed single crystal‐like long‐range order. The nature of the IL support little affected the morphology, but film thickness and cooling rate proved important. To assess the role of solvent polarity, crystals were also grown from 1‐ethyl‐3‐methylimidazolium ethyl sulfate mixed with the second IL, the less polar ethyl‐tributyl‐phosphonium diethyl phosphate; here, although the morphologies were similar to those made with pure IL, fibrillar morphologies were more prevalent. © 2020 Wiley Periodicals, Inc. J. Polym. Sci.2020,58, 478–486

     
    more » « less
  2. null (Ed.)