skip to main content


Search for: All records

Award ID contains: 1807735

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Changing the frequency of light outside the laser cavity is essential for an integrated photonics platform, especially when the optical frequency of the on-chip light source is fixed or challenging to be tuned precisely. Previous on-chip frequency conversion demonstrations of multiple GHz have limitations of tuning the shifted frequency continuously. To achieve continuous on-chip optical frequency conversion, we electrically tune a lithium niobate ring resonator to induce adiabatic frequency conversion. In this work, frequency shifts of up to 14.3 GHz are achieved by adjusting the voltage of an RF control. With this technique, we can dynamically control light in a cavity within its photon lifetime by tuning the refractive index of the ring resonator electrically.

     
    more » « less
  2. null (Ed.)
  3. The transverse-electric and transverse-magnetic modes of an X-cut thin-film lithium niobate waveguide vary in effective indices and exchange power when the waveguide makes an oblique angle with its crystallographic Z-axis, i.e. its optics axis. We leverage this phenomenon to design a passive fundamental-mode polarization rotator. In our design, the lithium niobate waveguide is tilted at an optimum angle with respect to its Z-axis, such that material anisotropy induces phase-matched polarization conversion. We discuss the rotator’s ideal-device length, crosstalk, and bandwidth. The proposed design yields compact (shorter than 1 mm), low-loss, passive polarization rotators for telecom wavelengths. 
    more » « less
  4. null (Ed.)