Quantum cascade lasers (QCLs) have emerged as promising candidates for generating chip-scale frequency combs in mid-infrared and terahertz wavelengths. In this work, we demonstrate frequency comb formation in ring terahertz QCLs using the injection of light from a distributed feedback (DFB) laser. The DFB design frequency is chosen to match the modes of the ring cavity (near 3.3 THz), and light from the DFB is injected into the ring QCL via a bus waveguide. By controlling the power and frequency of the optical injection, we show that combs can be selectively formed and controlled in the ring cavity. Numerical modeling suggests that this comb is primarily frequency-modulated in character, with the injection serving to trigger comb formation. We also show that the ring can be used as a filter to control the output of the DFB QCL, potentially being of interest in terahertz photonic integrated circuits. Our work demonstrates that waveguide couplers are a compelling approach for injecting and extracting radiation from ring terahertz combs and offer exciting possibilities for the generation of new comb states in terahertz, such as frequency-modulated waves, solitons, and more. 
                        more » 
                        « less   
                    
                            
                            Electrically induced adiabatic frequency conversion in an integrated lithium niobate ring resonator
                        
                    
    
            Changing the frequency of light outside the laser cavity is essential for an integrated photonics platform, especially when the optical frequency of the on-chip light source is fixed or challenging to be tuned precisely. Previous on-chip frequency conversion demonstrations of multiple GHz have limitations of tuning the shifted frequency continuously. To achieve continuous on-chip optical frequency conversion, we electrically tune a lithium niobate ring resonator to induce adiabatic frequency conversion. In this work, frequency shifts of up to 14.3 GHz are achieved by adjusting the voltage of an RF control. With this technique, we can dynamically control light in a cavity within its photon lifetime by tuning the refractive index of the ring resonator electrically. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1807735
- PAR ID:
- 10379318
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 47
- Issue:
- 22
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 5849
- Size(s):
- Article No. 5849
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Electrically driven acousto-optic devices that provide beam deflection and optical frequency shifting have broad applications from pulse synthesis to heterodyne detection. Commercially available acousto-optic modulators are based on bulk materials and consume Watts of radio frequency power. Here, we demonstrate an integrated 3-GHz acousto-optic frequency shifter on thin-film lithium niobate, featuring a carrier suppression over 30 dB. Further, we demonstrate a gigahertz-spaced optical frequency comb featuring more than 200 lines over a 0.6-THz optical bandwidth by recirculating the light in an active frequency shifting loop. Our integrated acousto-optic platform leads to the development of on-chip optical routing, isolation, and microwave signal processing.more » « less
- 
            Cavity-enhanced narrowband spectral filters using rare-earth ions doped in thin-film lithium niobateAbstract On-chip optical filters are fundamental components in optical signal processing. While rare-earth ion-doped crystals offer ultra-narrow optical filtering via spectral hole burning, their applications have primarily been limited to those using bulk crystals, restricting their utility. In this work, we demonstrate cavity-enhanced spectral filtering based on rare-earth ions in an integrated nonlinear optical platform. We incorporate rare-earth ions into high quality-factor ring resonators patterned in thin-film lithium niobate. By spectral hole burning at 4 K in a critically coupled resonance mode, we achieve bandpass filters ranging from 7 MHz linewidth, with 13.0 dB of extinction, to 24 MHz linewidth, with 20.4 dB of extinction. By reducing the temperature to 100 mK to eliminate phonon broadening, we achieve an even narrower linewidth of 681 kHz, which is comparable to the narrowest filter linewidth demonstrated in an integrated photonic device, while only requiring a small device footprint. Moreover, the cavity enables reconfigurable filtering by varying the cavity coupling ratmore » « lesse. For instance, as opposed to the bandpass filter, we demonstrate a bandstop filter utilizing an under-coupled ring resonator. Such versatile integrated spectral filters with high extinction ratio and narrow linewidth could serve as fundamental components for optical signal processing and optical memories on-a-chip.
- 
            Abstract The authors report a novel approach for designing tunable and reconfigurable bandstop filters by employing bias‐free optically‐controlled photoconductive radio frequency (RF) switching elements. To verify the effectiveness of the approach, a bandstop filter with two stopbands centred at 4.05 and 4.75 GHz was designed using a split‐ring‐coupled microstrip transmission line on RO3010 substrates. To enable reconfigurability, a micromachined Si chip with a thickness of ∼73 μm was embedded in the gap of each resonator. The tuning and reconfiguring of the filter are accomplished by selectively illuminating the Si chips using fibre‐coupled laser diodes with a wavelength of 808 nm. By turning on and off each laser diode, the filter stop bands can be dynamically reconfigured. In addition, the suppression of each stop band can be continuously and independently tuned by changing the light intensity from 0 to 20 W/cm2. With geometric scaling, this approach is promising for realizing a novel class of compact and high‐performance tunable and/or reconfigurable circuits from the microwave to mmW‐THz region.more » « less
- 
            Convergence of high-performance silicon photonics and electronics, monolithically integrated in state-of-the-art CMOS platforms, is the holy grail for enabling the ultimate efficiencies, performance, and scaling of electronic-photonic systems-on-chip. It requires the emergence of platforms that combine state-of-the-art RF transistors with optimized silicon photonics, and a generation of photonic device technology with ultralow energies, increased operating spectrum, and the elimination of power-hungry thermal tuning. In this paper, in a co-optimized monolithic electronics-photonics platform (GlobalFoundries 45CLO), we turn the metal-oxide-semiconductor (MOS) field-effect transistor’s basic structure into a novel, highly efficient MOS capacitor ring modulator. It has the smallest ring cavity (1.5 μm radius), largest corresponding spur-free free spectral range ( FSR = 8.5 THz ), and record 30 GHz/V shift efficiency in the O-band among silicon modulators demonstrated to date. With 1 V pp RF drive, we show an open optical eye while electro-optically tuning the modulator to track over 400 pm (69 GHz) change in the laser wavelength (using 2.5 V DC range). A 90 GHz maximum electro-optic resonance shift is demonstrated with under 40 nW of power, providing a strong nonthermal tuning mechanism in a CMOS photonics platform. The modulator has a separately optimized body layer but shares the gate device layer and the gate oxide with 45 nm transistors, while meeting all CMOS manufacturability design rules. This type of convergent evolution of electronics and photonics may be the future of platforms for high-performance systems-on-chip.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
